再生医療実用化研究事業

Research Project for Practical Application of Regenerative Medicine

●背景と重要課題

再生医療は、これまで有効な治療法のなかった疾患が治療できるようになるなど、国民の期待が高い一方、新しい医療技術であることから、安全面及び倫理面から十分な配慮が必要です。また、再生医療は政府の成長戦略にも位置づけられるなど、新たな産業の 創出に寄与するものとして、早期の実用化が望まれています。

●再生医療の現状

再生医療は、機能不全になった組織、臓器を補助・再生させる医療で、今までの治療では対応困難であった疾患に対する新たな治療法となり得るものであり、その実用化は喫緊の課題です。このため、再生医療等技術のリスクに応じた適切な安全性の確保等に関する措置や再生医療等を提供しようとする者が講ずべき措置を明らかにした「再生医療等の安全性の確保等に関する法律」及び再生医療等製品の特性を踏まえて早期の実用化に対応した承認審査や市販後安全対策等を内容とする「医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律」が平成25年11月に成立し、平成26年11月から施行されるなど体制整備が行われてきました。

●再生医療に対する研究事業の方向性

平成26 年6月に閣議決定された「「日本再興戦略」改訂2014-未来への挑戦-」や、同年7月に閣議決定された「健康・医療戦略」も踏まえ、再生医療に関する倫理性及び科学性が十分に担保され得る質の高い臨床研究計画に対して、基礎から臨床段階まで切れ目なく一貫した支援を行うとともに、再生医療関連事業のための基盤整備を進め、我が国において最新の再生医療等を世界に先駆けて本格的に実用化することを目指します。また、多能性幹細胞、体性幹細胞等の創薬支援ツールとしての活用に向けた研究の支援を行い、新薬開発の効率性の向上を図ります。

安全性の確保のための研究

治療方法探索のための研究

i PS細胞等の多能性幹細胞の臨床応用に向けた細胞 特性解析のための研究

再生医療実用化 、の促進 産学連携による研究

臨床研究等の実施中 に生じた課題解決の ための研究

多能性幹細胞・体性幹細胞等を利用した創薬応用のための研究

再生医療等技術の効率化のための研究

再生医療等技術の国際 展開のための研究

〇多能性幹細胞(iPS/ES細胞)、体性幹細胞等を用いて、 再生医療等安全性確保法に従って実施する臨床研究

再生医療等の安全性の確保等に関する法律に則った臨床研究に 対する支援、臨床研究を経て実用化を目指す課題に対する支援

- 〇多能性幹細胞(iPS/ES細胞)、体性幹細胞等を用いて、 企業の協力を得ながらプロトコールを組む医師主導治験
 - アカデミアと企業との共同研究を支援することによる再生医療等製品 等の薬事承認申請を目指す医師主導治験や非臨床試験の推進
- ○多能性幹細胞(iPS/ES細胞)、体性幹細胞等を用いて、産学が連携して 再生医療等製品の開発を目指す研究

再生医療等製品、またはバイオ医薬品の開発経験がある企業担当者を 「開発戦略コンサルタント」として位置づけ、開発の方向付け、実用化 計画の策定を行うことによる、アカデミア発のシーズを速やかに 再生医療等製品等への開発につなげる研究の推進

○多能性幹細胞、体性幹細胞等を利用した創薬研究 多能性幹細胞、体性幹細胞等を用いた、医薬品候補化合物のための効果的・効率的な有効性・安全性評価等に関する研究開発を支援

臨床研究・治験の促進

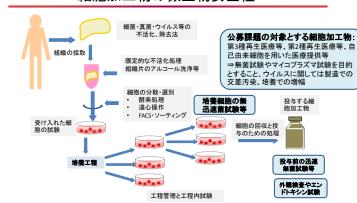
- •再生医療等の実用化の促進
- 再生医療等製品等の開発の加速

創薬研究の推進

- ・新規治療薬の臨床応用の促進
- ・画期的な新薬の効率的開発

医療として提供されている再生医療等に用いられる細胞加工物の最適な微生物等検査方法に関する研究

山口 照英 日本薬科大学 客員教授

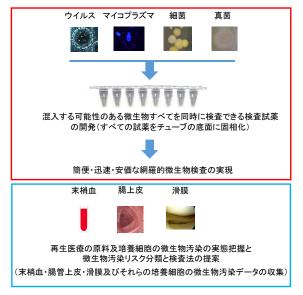

現在数多くの再生医療が大学や病院で行われていますが、その多くが医療として提供されています。一方でまれではありますが医療提供後に感染症を引き起こした事例も見受けられます。再生医療は生きた細胞を用いて治療を行うために通常の医薬品のように無菌化工程を設定することができないため、このような感染症防止には汚染の防止対策と細胞加工物の迅速な無菌試験の適用が重要です。本研究では医療提供されている再生医療に用いられる細胞加工物における微生物汚染に対するリスクを回避するために、どのような無菌試験方法を適用するのが妥当なのか、さらに試験の実施に当たってどのような検体を用いて検査するべきかの要件を明らかにすること、さらに現在医療提供されている細胞

加工物ごとに類別し、迅速無菌試験の在り方を先導

的に明示するための研究を実施しています。

細胞加工物の微生物安全性

医療として提供される再生医療等の微生物安全性 確保に関する研究


清水 則夫 東京医科歯科大学 再生医療研究センター 准教授

再生医療等安全性確保法などの法整備により医療として再 生医療等を提供するための枠組みが整い、臨床研究や自由診 療として多数の再生医療等の提供が行われています。

一方、ヒトには多くの持続感染微生物(ウイルス・細菌・真菌など)が存在しており、さらに細胞加工物は滅菌処理できない特質を持っているため、検査により細胞加工物の微生物安全性を確保することが極めて重要となります。

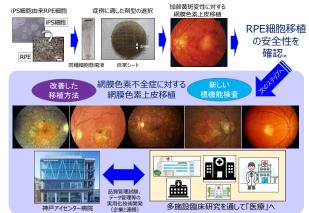
本研究では、これまでに開発したリアルタイムPCR法を応用した迅速ウイルス・マイコプラズマ検査法に加え、同様のプラットフォームを利用した迅速無菌試験法を開発し、それらを統合した迅速・簡便・安価な微生物検査法の確立を目指します。

また、がん免疫療法・膝半月板再生・腸粘膜再生を例に原料と細胞加工物に混入する微生物に関するデータを収集し、微生物等汚染リスクによる細胞加工物の類型化と細胞加工物タイプ別に最適な微生物検査法を提案することを目的とします。

http://www.tmd.ac.jp/med/arm/

iPS細胞由来網膜色素上皮(RPE)を用いた網膜変性 疾患に対する臨床研究

髙橋 政代 神戸市立神戸アイセンター病院 研究センター



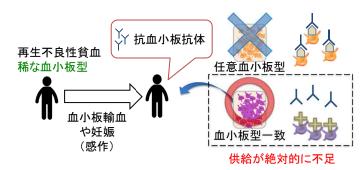
加齢黄斑変性に対するiPS細胞由来網膜色素上皮(RPE)細胞移植

これまで、iPS細胞から作ったRPE細胞を、患者さんの眼の状態に 合わせて2種類の移植方法、自家iPS細胞由来RPEシートと同種(他 家)iPS細胞由来RPE細胞懸濁液を使用して、主にその安全性を調 べることを目的に加齢黄斑変性の患者さんに移植しました。その成 果として、移植したRPE細胞からの腫瘍の発生や異常な増殖はみら れず、他人の細胞である同種iPS細胞から作ったRPE細胞移植の免 疫拒絶反応(移植された細胞に対して患者自身の細胞が排除しよう とする仕組み)に対しても、おなじHLAを持つ患者さんに移植するこ とで、免疫拒絶反応を抑えることができることが確認されました。ま た、移植は患者さんの視力も維持されたことから、次のステップであ るiPS細胞由来RPE細胞移植の実用化に向けた準備が整いました。

色素上皮不全症多施設臨床研究の実施

現在、この治療を次の段階に進めるために、加齢黄斑変性だけで はなく、RPE細胞の異常が原因となる様々な病気をひとくくりにした 網膜色素上皮不全症に含まれる患者さんを対象とし、有効性を調べ る臨床研究の準備を進めています。また、この研究では、移植細胞の 広い範囲での均一な生着が期待され、移植方法の改善と新しい高

感度の視機能検査を取り入れることで、有効性評価に向けての準備 をかため、加えて、企業とも連携し、品質管理試験や臨床データ管理 などの実用化技術の開発を進め、より多くの医療機関で臨床研究を 行う予定です。


URL http://kobe.eye.center.kcho.jp/

自家iPS細胞由来血小板製剤の安全性有効性検証 臨床研究

江藤 浩之 京都大学 iPS細胞研究所 教授

血小板にはHLA(ヒト白血球抗原)クラスIやHPA(ヒト 血小板特異抗原)といった型があります。赤血球のABO 型と異なり、これらの型が合っていなくても通常は問題な く血小板の輸血ができます。しかし、時に自分と異なる型 に対する拒絶反応が起こり、輸血しても血小板が増えな い状態(血小板輸血不応症)になります。このような場合、 型の適合する血小板が輸血に必要ですが、稀な型である と適合する献血ドナーを見つけることが難しいことがあ ります。そこで、再生不良性貧血という血小板が減少する 病気を持ちながら適合する献血者が見つからない1名を 対象に、ご本人のiPS細胞から血小板を製造し、実際に輸 血して副作用が起こらないかを検証する臨床研究を行い ました。安全性の確認ができれば、大量の血小板輸血が 実際に必要になった時に、自分のiPS細胞由来の血小板 の輸血を安心して受けられることに繋がります。

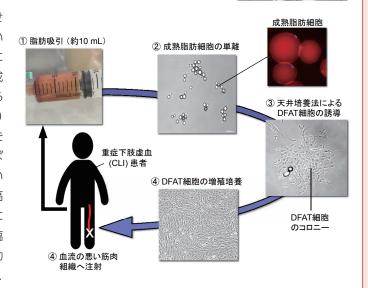
臨床研究計画のコンセプト(自己輸血)

- 自己のiPS細胞から血小板を製造する(唯一の治療手段)
- 用量漸増 (初期投与量は輸血製剤の1/20)
- 主要評価項目は安全性、副次評価項目は有効性

http://www.cira.kyoto-u.ac.jp/j/research/eto_summary.html http://www.cira.kyoto-u.ac.jp/eto/

低酸素性虚血性脳症に対する自己臍帯血幹細胞治療に関する研究

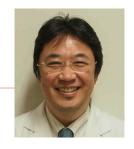
新宅 治夫 大阪市立大学大学院 医学研究科 特任教授


重症仮死の主因である周産期の低酸素性虚血性脳症(HIE)は、出生時の脳への血流遮断により脳障害を引き起こします。周産期のHIEは脳性まひの主たる原因で、出生1,000人に対し1~3人の割合で生じています。いったん脳性まひになってしまうと現在の医学において有効な治療法はないため、新生児期の治療で脳性まひを未然に防ぐことが極めて重要です。本研究グループが取り組んでいる「自己臍帯血幹細胞治療」とは、HIEとなった新生児に自分の臍帯血から採取した幹細胞を出生後24時間ごとに3日間かけて点滴投与する治療法で、脳障害の回復を目的としています。自身の臍帯血を用いているので拒絶反応を防ぐことも可能となります。この研究はAMED 平成26~28年度「再生医療等実用化研究事業」の「低酸素性虚血性脳症に対する自己臍帯血幹細胞治療関する研究」として第1相試験を終了し第11相試験を実施しています。

新生児低酸素性虚血性脳症に対する自己臍帯血幹細胞治療 (2)幹細胞を分離 (3)分離した自己臍帯血幹細胞を 24時間、48時間、72時間後に投与

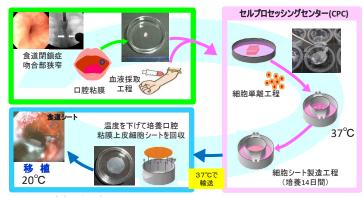
重症下肢虚血に対する脱分化脂肪細胞(DFAT)を 用いた細胞治療の実用化

松本 太郎 日本大学 医学部 機能形態学系細胞再生・移植医学分野 教授


間葉系幹細胞(MSC)は患者自身の組織から培養・増殖させ ることができるため、再生医療用材料として広く利用されてい ます。一方、MSCの性能は採取する患者の年齢や基礎疾患に 影響を受け低下するという欠点がありました。われわれは成 熟脂肪細胞を天井培養という方法で培養することにより得ら れる脱分化脂肪細胞(dedifferentiated fat cells: DFAT) が、MSCに類似した高い増殖能と多分化能を獲得することを 明らかにしました。DFATは少量の脂肪組織から患者を選ば す均質なMSC様細胞を大量調製できるため、実用性の高い 治療用細胞として期待できます。本研究事業ではDFATの高 い血管新生能を利用して、重症下肢虚血(CLI)患者を対象に 自家DFATを用いた血管再生細胞治療のFirst-in-Human臨 床研究を実施します。そしてDFAT細胞治療の安全性と有効 性を明らかにし、治験への移行を目指します。本研究成果は、 患者の年齢や基礎疾患に影響されず、低コストで実用性の高 い細胞治療の普及に寄与することが予想されます。

URL http://www.med.nihon-u.ac.jp/department/saisei/dfat/index.html

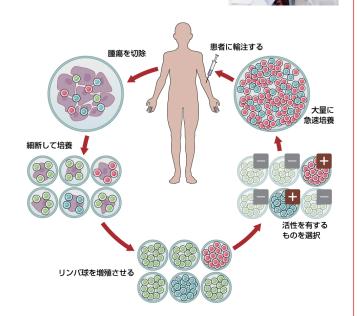
先天性食道閉鎖症術後の小児を対象とした自己上 皮細胞シートによる再生治療のFIH臨床研究


渕本 康史 国際医療福祉大学 小児外科 主任教授

先天性食道閉鎖症は1/4000の割合で発症する先天的に食道が閉鎖する疾患です。治療は上下の食道の吻合ですが、約40%に術後吻合部狭窄を生ずるとされています。吻合部狭窄は内視鏡下バルーン拡張術による治療が必要で、長期に渡り拡張が必要となり生活の質(QOL)の著名な低下を示す患児も少なくありません。欧米では3回以上の拡張にて改善の乏しい症例には再吻合術やステント術が推奨されていますが、術後の再狭窄や合併症も問題となっています。自己口腔粘膜を培養して作成され

る食道シート移植術は成人表層食道癌に対してほぼ狭窄が必 発の広範囲内視鏡的粘膜下層切除術後の症例に対して狭窄 防止の有効性が示されてきました。我々はこの細胞シート移植

口腔粘膜細胞シートを用いた先天性食道閉鎖症術後吻合部狭窄に対する再生医療


(成育医療研究センター)

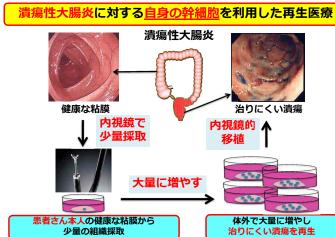
の技術を生かして、先天性食道閉鎖症術後吻合部狭窄に対して自己□腔粘膜シートを移植する世界初の再生医療(First-in -human)を実用化することを目指しています。

進行性の子宮頸癌に対する腫瘍浸潤Tリンパ球輸 注療法

河上 裕 国際医療福祉大学 医学部 免疫学 医学部長 教授 慶應義塾大学 医学部 先端医科学研究所 細胞情報研究部門 特任教授

癌組織には癌を攻撃するTリンパ球(腫瘍浸潤Tリンパ球: TIL)が存在する場合があります。「腫瘍浸潤Tリンパ球(Tumor Infiltrating Lymphocyte; TIL)輸注療法 以下TIL療法」は、TILを取り出し、大量に培養して増やして、患者さんに戻す治療法です。我々はこれまでにAMED支援のもと、悪性黒色腫を対象にTIL療法を実施し、実現可能性を確認してきました。進行子宮頸癌に対しては、主に抗がん剤による治療が行われますが、多くは1年以内に薬剤耐性を獲得し極めて難治性です。米国では、TIL療法は進行子宮頸癌に対しても有効性が報告され、腫瘍消失例では再発が少ないことも示されており、第II相臨床試験も実施されています。我々はTIL療法が進行性子宮頸癌に対して有効な治療法になり得ると考えています。本研究では、有効な治療法のない進行性子宮頸癌に対してTIL療法を先進医療として実施し、安全性と有効性を検討した上で、将来の治験実施を目指します。

自家腸上皮幹細胞移植による炎症性腸疾患の粘膜 再生治療に関する研究

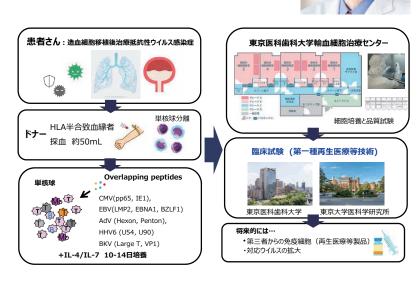

東京医科歯科大学 理事·副学長 渡辺 守 高等研究院 院長・特別栄誉教授

本研究では、腸管の難病である潰瘍性大腸炎に対し 腸上皮幹細胞の培養・移植技術を用いた治療を行う際 の安全性を検証するため、臨床研究を実施します。これ までに①内視鏡を使って採取した僅かな患者組織を用 い、効率良く腸上皮幹細胞を含む「自家腸上皮オルガノ イド」の培養を可能とする技術の開発、②培養した「自家 腸上皮オルガノイド」の安全性等を評価するための品質 管理法の開発、③培養した「自家腸 ト皮オルガノイド」を 内視鏡を使って効率よく腸粘膜に送達する技術の開発 等に成功しています。これら技術を用い、従来の治療薬 では「難治性」の潰瘍に対し体外で培養した「自家腸上皮 オルガノイド」を移植する治療について、安全性の検証 を目的とした臨床研究を行います。本研究で安全性が

確認された際には、有効性の評価を目的とした更なる研 究を実施することにより、新たな治療として提供・普及さ

せることを目指します。

「安全性の検証」を目的としたFirst-in-human(FIH)試験を実施


URL http://www.tmd.ac.jp/grad/gast/index.html

造血細胞移植後難治性感染症に対する 複数ウイルス特異的T細胞療法の臨床研究

森尾 友宏 東京医科歯科大学 大学院発生発達病態学分野 教授

この研究では造血細胞移植後の治療抵抗性 日和見ウイルス感染症に対する免疫細胞治療 を開発し、臨床研究を行います。造血細胞移植 の後には、免疫の力が回復するまでの間、アデ ノウイルス、BKウイルス、EBウイルス、サイトメ ガロウイルス、ヒトヘルペスウイルス6型など 様々なウイルス感染症に罹患します。有効な薬 剤がないものや、薬剤抵抗性を獲得することも あり、治療に難渋する症例も多いことから、私 たちはこれらの5ウイルスに対する「特異的T 細胞」、免疫学的機序でウイルス排除に関与す る細胞を2週間以内に調製できる方法を用い て、培養をより安全なものとして、臨床研究を

開始しています。将来的には、抗がん剤治療や、様々な免疫抑 制薬を用いている時に発症するウイルス感染症に対して、薬に 頼らずに用いることができる、有効かつ安全な細胞治療の確立

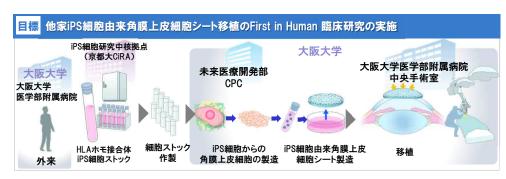
に至ることを願って研究を進めています。

URL http://www.tmd.ac.jp/cmn/amr/neog/immune.html

同種iPS細胞由来軟骨移植による関節軟骨損傷の 再生

妻木 範行 京都大学 iPS細胞研究所 教授

損傷した軟骨は修復能力に乏しく、修復しても機能が劣る線維性軟骨で置換され、将来的には変形性関節症に移行する場合が多く見られます。このため、損傷軟骨は正常な軟骨を移植して修復する必要があります。これまでは、正常な軟骨を大量に用意することは不可能でしたが、我々はiPS 細胞から良質な軟骨を大量製造する技術の開発に成功しました。さらにこの軟骨の品質管理体制を構築し、軟骨が免疫反応を起こしにくいことを含め、その安全性と有効性を確認しました。これらのデータをもとに臨床研究を実施する計画です(厚労省承認取得済)。これまでの関節軟骨損傷に対する細胞移植治療法では、移植細胞自身は修復組織を形成せず、その修復機序は、移植細胞が一過性に産生する修復因子による効果であり、その効果も限定的でした。このような既存の治療法とは異なり、我々は移植軟骨自身が修復軟骨を構成する根治的な軟骨再生治療法の実現を目指します。



https://www.cira.kyoto-u.ac.jp/j/research/tsumaki_summary.html https://tsumaki-web.wixsite.com/tsumaki-cira

iPS細胞由来角膜上皮細胞シートのfirst-in-human 臨床研究

西田 幸二 大阪大学大学院 医学系研究科 教授

本課題では、我々が世界で初めて開発した、iPS細胞から角膜上皮細胞シートを作製する新規再生医療技術のFirst-in-human臨床研究を実施しています。2018年度までに製品の品質安全性の検証、および適切な製造管理体制の構築、臨床研究の実施運営

体制の確立を行い、厚生労働省より臨床研究実施の承認を得ました。2019年度からはFirst-in-human臨床研究を開始し、2019年7月には世界初の"iPS細胞由来角膜上皮細胞シート"の移植を実施しました。これまでに3例の被検者に対し移植手術を行い、現在、術後経過を観察しています。また、開発した製品の再生医療等製品としての保険収載を目標に、薬事に関す

る規制対応も促進しています。本研究事業では、本再生医療等製品の臨床研究を推し進め早期の実用化と普及につなげることで、既存の角膜移植治療におけるドナー不足と拒絶反応という課題の解決を目指します。

http://www.med.osaka-u.ac.jp/pub/ophthal/www/

バイオ3Dプリンタを用いて造形した小口径 Scaffold free細胞人工血管の臨床研究

中川 功一 佐賀大学 医学部附属再生医学研究センター センター長/教授

私たちは、細胞団子を剣山に積層して立体構造物を作製する独自の"バイオ3Dプリンタ"を使い、細胞だけでできた新しい人工血管の開発を行っています。

ケガや病気で血管が切れたり詰まったりしたときには、人工 血管を使った血行再建手術が行われており、再建したい部位に 合わせて様々な太さの人工血管が利用されています。しかし、 従来の人工血管は、ポリウレタンやテフロン樹脂などの人工材料からできているため本物の血管に比べて細菌感染に弱い、 詰まりやすい、針を刺すと針穴が塞がりにくいなどの課題があります。私たちが開発した人工血管は細胞だけでできており、 本物の血管に近い性質をもつため、既存の人工血管のこうした課題を克服できることが期待できます。

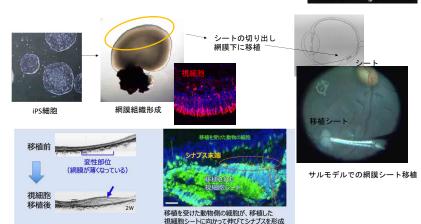
本研究課題では、この細胞人工血管を実際の患者さんに血管として移植し、安全かどうか?血管として機能するか?を確認するための臨床研究を行います。人工透析を受ける末期腎不全患者さんのうち、透析を受けるためのバスキュラーアクセス

(シャント)に詰まりや瘤などのトラブルを抱える方を対象とします。患者さんご自身の皮膚から採取した細胞から細胞人工血管を作製し、シャントのトラブル箇所を置き換えたり迂回したりする形で移植します。

http://regeneration.med.saga-u.ac.jp/

網膜色素変性に対する同種iPS細胞由来網膜シート 移植に関する臨床研究

髙橋 政代 神戸市立神戸アイセンター病院 研究センター センター長


iPS細胞やES細胞から作製した網膜組織

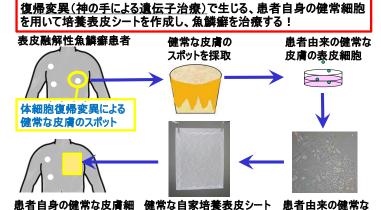
網膜の中でも視細胞は、外界からの光を 最初に受け取って情報に変換する重要な 役目を担っています。我々の研究により、 iPS細胞から視細胞を含む立体的な構造の 網膜シートを作製し、移植に用いることが できるようになりました。

モデル動物への視細胞移植

これまでに網膜変性モデル動物にES細胞やiPS細胞由来の網膜シートを移植して、細胞が生着し、神経がつながること(シ

ナプス形成)、移植を受けた変性網膜が光に反応するようになることを確認しました。2020年度には、iPS由来網膜シートを用いた臨床研究をアイセンター病院で始めています。引き続き、企業治験やより良い機能回復を目指した次世代移植治

療の研究も進めています。


体細胞復帰変異によるモザイク健常皮膚由来の培養 表皮シートを用いた表皮融解性魚鱗癬の治療法開発

秋川真志 名古屋大学大学院 医学系研究科·皮膚科学分野

表皮細胞の培養

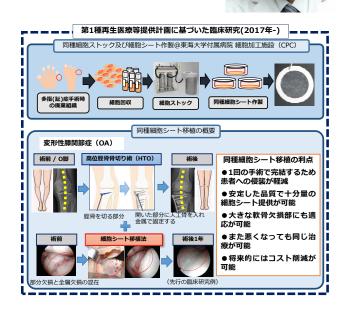
魚鱗癬は、全身の皮膚の表面がめくれて赤くなった り、厚く、硬くなったりする病気ですが、その一型である 表皮融解性魚鱗癬は、ケラチン1または10の遺伝子変 異により生じます。重症の患者さんでは、手掌、足底が 高度に硬くなり、関節の拘縮や皮膚の亀裂をきたしま す。病気の原因の変異を持つ遺伝子に、さらに変異が 起こり、遺伝子変異が消失する現象は、「復帰変異」と呼 ばれ、まさに「神の手による遺伝子治療」と言えます。表 皮融解性魚鱗癬には、この「復帰変異」によるスポット 状、線状の正常な皮膚を体のところどころに持つ患者 さんがいることが最近解って来ました。その状態は「復 帰変異によるモザイク状態」と称されます。私たちは、 この健常な皮膚から正常な表皮細胞を採取し、培養表 皮細胞シートを作成、それを患者さん自身の魚鱗癬の 部位に移植することで、遺伝子操作や他人の細胞を用 いることなく、魚鱗癬の根本的な治療を目指します。

本治療のアドバンテージ

胞シートの移植による治療

①患者自身の復帰変異した細胞を利用 ②既製品のジェイス®を使用

URL http://www.med.nagoya-u.ac.jp/derma/

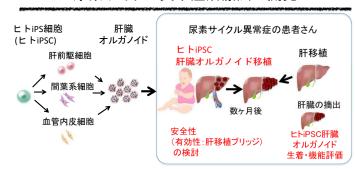

「ジェイス®」の作成

変形性膝関節症に対する同種細胞シート移植の臨 床研究

佐藤 正人 東海大学 医学部医学科外科学系整形外科学 教授

変形性膝関節症(OA)は緩徐に進行する難治性の関節軟骨 の変性による疾患です。罹患率が高く、高齢化に伴い今後さら に患者数の増加が懸念されています。現状ではOAの根本的 な治療法(変形矯正(防止)+軟骨欠損部の修復再生)がなく、 長期的な対症療法の後に、終末期には人工関節への置換が必 要となります。

我々は、生体が本来もっている硝子軟骨(優れた粘弾性や滑 らかさが特徴)での修復再生を可能とする軟骨細胞シートによ る治療法の研究を進めています。これまでに、患者さん本人の 細胞から作製した自己細胞シートを移植する臨床研究を実施 して、中長期の安全性、有効性を確認して、現在は先進医療Bと して実施しています。本課題では、多指症手術時の廃棄組織か ら得た細胞を利用して作製した同種細胞シートを移植する臨 床研究を、再生医療等安全性確保法の下、第1種再生医療等提 供計画として実施しています。臨床研究の成果を企業治験に 繋げ、早期実用化を目標に取組んでいます。


尿素サイクル異常症に対するヒト肝臓オルガノイド 移植治療法の開発

谷口 英樹 東京大学 医科学研究所

私たちはヒトiPS細胞から分化誘導した肝前駆細胞、間 葉系幹細胞、血管内皮細胞の3種類を混合培養して、肝臓 の代謝機能を有したヒトiPSC肝臓オルガノイドを開発して います。本研究開発では尿素サイクル異常症を対象とした ヒトiPSC肝臓オルガノイド移植の臨床試験を行います。尿 素サイクル異常症は先天代謝異常症の一つでOTC欠損 症やCPS1欠損症などが知られていますが、アンモニアを 代謝する酵素が欠損している以外の肝機能は正常に保た れているのが特徴です。高アンモニア血症を発症すると非 可逆的な中枢神経障害を起こすことから、早期治療が必 須の疾患です。現在のところ根治療法は肝移植のみです が、体重6kg程度に成長しないと移植が安全に行えないた め、肝移植までのブリッジ治療法の確立が求められていま す。私たちはヒトiPSC肝臓オルガノイド移植によるブリッ ジ治療法の確立と、将来的には肝移植に代わる新しい尿 素サイクル異常症の治療法の開発を目指します。

ヒトiPSC肝臓オルガノイド移植による 尿素サイクル異常症治療法の開発

将来的にはヒトiPSC肝臓オルガノイド移植による肝移植に 代わる新しい尿素サイクル異常症の治療法開発を目指す。

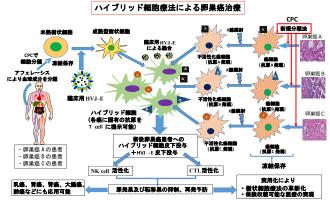
URL https://www.ims.u-tokyo.ac.jp/imsut/jp/lab/stemcell/section01.html

変形性膝関節症の構造改善のための滑膜幹細胞関 節内注射:二重盲検比較試験に向けて

関矢 一郎 東京医科歯科大学 統合研究機構 再生医療研究センター 教授

変形性膝関節症は主に加齢が原因で関節軟骨が摩耗し、膝 の痛みを生じる疾患で、国内の膝痛患者は850万人と推定さ れています。痛みを抑えるための飲み薬や注射はありますが、 変形性膝関節症の進行を抑えるための保存治療はありませ ん。私たちは基礎研究で、滑膜由来の幹細胞を定期的に膝関 節内に注射することで、軟骨の摩耗が抑えられることを明らか にしました。これに基づいて、2017年、滑膜幹細胞の関節内注 射により変形性膝関節症の進行が抑制できるかを明らかにす るための臨床研究を開始しました。また、わずかな軟骨の変化 をとらえるために、MRI画像を3次元化して軟骨を細かく定量 評価する方法も開発しました。2020年3月に全対象者の観察 期間を終え、現在は、開発した評価手法による治療効果の解析 および総括を行っています。今後、再生医療等製品の製造販売 承認申請に向けた次のステップである二重盲検比較試験の実 施を目指します。

[臨床研究]変形性膝関節症に対する滑膜幹細胞の関節内注射


URL http://www.tmd.ac.jp/cmn/amr/neog/cartilage.html

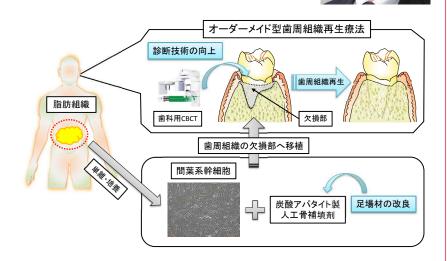
革新的ハイブリッド細胞療法による癌の個別化先進 医療の研究開発

木村 正 大阪大学大学院 医学系研究科

本研究は、革新的ハイブリッド細胞療法を開発し、保険収載 可能な医療としての実用化を目指しています。対象患者は化 学療法抵抗性の卵巣癌患者です。同意を得た患者の卵巣癌組 織や腹水から癌細胞を分離しX線で不活性化し、さらに患者血 液より樹状細胞を分離し成熟化させ、これらの細胞を不活性化 センダイウイルス粒子(HVJ-E) で融合したハイブリッド細胞を 作製します。臨床研究ではこのハイブリッド細胞とHVJ-E の皮 下投与を行います。HVJ-E は多彩な抗腫瘍免疫活性を有し、 すでに医師主導治験により安全性と免疫活性化が確認されて います。このハイブリッド細胞では患者固有の癌抗原が提示さ れ、HVJ-E による免疫活性化作用により癌に対するキラーT 細胞が活性化され、またNK 細胞の活性化、制御性T 細胞の抑 制など複合的な抗腫瘍免疫活性化が期待できます。再生医療 等提供計画の届出を厚生労働省に行い平成30 年度より臨床 研究を実施しており、6症例の進行卵巣癌患者のハイブリッド 細胞を作成し凍結保存しています。今後、患者が化学療法抵抗

性になった時点でハイブリッド細胞療法を行い、安全性、治療 効果を判定します。その成果をもとに先進医療、治験へと移行 する予定です。

URL https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_his_list.cgi?recptno=R000035704


自己脂肪組織由来幹細胞移植による歯周組織再生 療法に関する有効性検証試験

村上伸也 大阪大学 歯学部 教授

歯周病は成人の約8割が罹患し、歯を喪 失する第一の原因となっている国民病で す。歯周病は、歯と歯肉の境界部に付着し たバイオフィルム(プラーク)が原因となり、 歯を支える組織(歯周組織)が破壊される 病気ですが、プラークの除去だけでは失わ れた歯周組織は再生しません。また、現在 臨床応用されている歯周組織再生療法で は、重度の歯周病に対応できません。

そこで我々は、重度歯周病患者さんの皮 下脂肪組織から単離・培養した間葉系幹細 胞を、歯周病によって失われた歯周組織欠 損部分に自己移植することにより、歯周組


織を再生させる治療法の開発に取り組んでいます。現在は、歯 周組織欠損部の診断技術の向上および幹細胞の足場となる材 料の改良により、患者様一人一人の状態に合わせたオーダー

メイド型の歯周組織再生療法の開発を目指しています。 この治療法は、「口と歯」が支えるQOLの維持・増進につなが るものと考えています。

92

C型肝炎ウイルスに起因する肝硬変患者に対する G-CSF動員自家末梢血CD34陽性細胞の経肝動脈 投与に関する臨床研究

鳥村 拓司 久留米大学 医学部内科学講座消化器内科部門 教授

現在日本には約40万人の肝硬変患者がいると推定されています。その成因は肝炎ウイルスによるものが多く、約60%がC型肝炎ウイルス感染によるものです。現在は、非代償性肝硬変の患者に対しても飲み薬による抗ウイルス治療が可能となりましたが、これまでの報告において、ウイルスが排除できたとしても肝予備能の改善が得られない症例

が半数以上いることが分かっており、これらの患者に対して十分な対策を講じることが急務です。私たちが考案する治療法は、患者自身の血液中にある血管を作りだす細胞(自家末梢血CD34陽性細胞)を取り出し、肝臓に移植することで血管を再生し、肝硬変を治療することを目標としております。

本研究は、C型肝炎ウイルスに起因する非代償性肝硬変の 患者様を対象としています。この治療法による肝硬変の改善に ついてはいくつかの研究が行われており、動物実験や患者様 を対象とした研究で、新たな血管が作られることにより肝硬変

肝硬変の患者様に対しG-CSF製剤を5日間皮下注射し、末梢血単核球を採取します。その後CD34陽性細胞のみを磁気を用いて分離し、肝臓近くまでカテーテルの先端を進め、肝臓へ細胞を移植します。

の進行を抑え、肝機能の改善、腹水や浮腫が改善する可能性が報告されています。全実施医療機関において当該研究の実施に際し必要な書類作成を完了し、「再生医療等の安全性の確保等に関する法律」に基づき、特定認定再生医療等委員会および各実施医療機関内倫理委員会による審査・承認を得て、厚生労働省へ届出・受理されました。現在、非代償性肝硬変の患者様24名の参加を目標に、臨床研究を行っております。

URL

https://www.kurume-u.ac.jp/site/aro/saiseiiryou.html

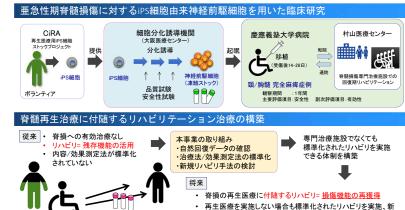
全身性強皮症に伴う皮膚潰瘍に対する自家骨髄単核球移植を用いた血管再生療法に関する研究開発

吉見 竜介 横浜市立大学 医学部 血液・免疫・感染症内科学 講師

全身性強皮症は慢性的に過剰な線維化を生じ皮膚や 内臓が硬化する原因不明の希少疾患であり、国の指定 難病のひとつになっています。この疾患では血管障害に よってしばしば手指や足趾に皮膚潰瘍が生じますが、重 症の場合には既存治療での治癒が困難になることがあり ます。私たちはこのアンメットニーズに応える新規治療法 として、自家骨髄液中から血管内皮への分化能をもつ血 管内皮前駆細胞を含んだ単核球細胞分画を採取し、それ を四肢へ移植して血管を新生させる血管再生療法を全 身性強皮症の難治性皮膚潰瘍に対して試み、先行研究で は高い有効性と安全性を認めました。本研究は、この「全 身性強皮症に伴う難治性皮膚潰瘍に対する自家骨髄単 核球移植」の保険収載を実現するために、承認申請に足 る規格と品質を担保した臨床試験を先進医療Bとして行 い、安全性と有効性を多施設で前向きに検証することを 目的としており、現在試験の準備を進めています。

URL

URL http://www.ycuhri.com/examine/rheumatology.html


脊髄再生治療に付随するリハビリテーション治療の 構築に関する研究

中村 雅也 慶應義塾大学 医学部 整形外科学教室 教授

私達はこれまで、ヒトiPS 細胞から神経前 駆細胞を作製することに成功し、亜急性期脊 髄損傷モデル動物に対する有効性を報告し てきました。2019年度にはこの研究成果を 用いた臨床研究計画が厚生科学審議会で 承認され、2020年度にはヒトiPS 細胞を用 いて亜急性期の脊髄完全損傷患者さんを治療する世界初の臨床研究を開始できる見込 みです。加えて、本事業の一環として、慶應 義塾大学と複数の医療機関や日本脊髄障害 医学会が協力しながら、リハビリテーション 治療の内容や、治療効果測定方法の標準化

を目指す取り組みも実施してきました。2020年度には脊髄損傷に対する標準的リハビリテーション治療プロトコール案が完成予定です。このプロトコール案を活用し、将来的には再生医療に付随する「失われた機能の再生を目指す」リハビリテーショ

ン治療まで実施できるよう、国内の体制を整備していきたいと考えています。

規手法の活用にてADL拡大をはかる

http://www.keio-ortho.jp/orthopaedic/group05_01.html

重症虚血肢に対し、筋組織酸素飽和度(StO2)をモニタリングする近赤外線分光装置(NIRS)を使用した至適運動療法を確立する研究

的場 聖明 京都府立医科大学 大学院医学研究科循環器内科学 教授

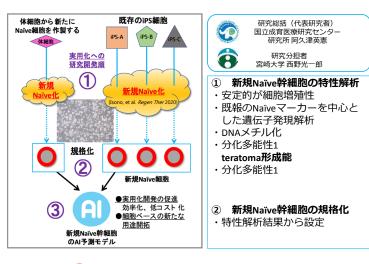
重症虚血肢はカテーテル治療等の血行再建術が発展してきましたが、未だに5年生存率は低く、肢切断に至ればADLやQOLに関わる予後の悪い疾患です。現在、難治性の症例に対して「自己骨髄単核球細胞を用いた血管再生治療」が臨床導入されており、長期予後調査の結果、従来の標準治療と比べ救肢率や生存率は向上し、良好な転帰を報告しています。

さらに、重症虚血肢患者においては歩行や運動が十分にできなくなることで、骨格筋量の低下や血管内皮機能の低下が進み、救肢率や生存率の低下に関わると報告されています。しかしながら、重症虚血肢患者に対しては運動療法の有効性や方法は確立されていません。

そこで、我々は自家骨髄単核球細胞を用いた血管再生治療 を実施された重症虚血肢患者を対象に、適正な運動療法が虚 血肢に与える有効性を明らかにする臨床研究を実施します。本

研究の結果をもとに、さらに多くの患者を救肢し、生存率の向上を目指します。

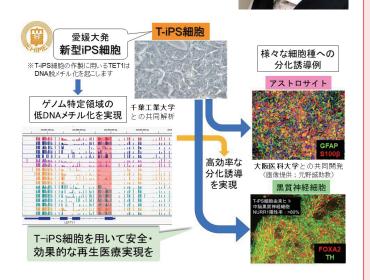
http://www.f.kpu-m.ac.jp/k/med2/group/rinsho/r-04.html


新規Naïve型幹細胞の創出と品質評価システムの 開発

阿久津 英憲 国立成育医療研究センター研究所 生殖医療研究部

研究開発はNaïve型幹細胞の観点から、すでに再 現性のあるLIF依存性ヒト幹細胞として確認した新規 Naïve型幹細胞の培養システムを検証し汎用化させ る基盤を構築します。この安定化したNaïve型幹細 胞・培養システム・評価法の活用によりヒト多能性幹 細胞の産業応用への発展を目指します。ヒト多能性 幹細胞を用いた様々な実用化事業において細胞株 間の差(選択性の課題)と強い分化傾向性(安定した 製造工程構築の課題)などの課題克服に応えるもの です。新たな幹細胞を構築するのみならず、細胞品 質データ(DNAメチル化)から機械学習を行いAIモ デルを構築します。ヒト多能性幹細胞が個々の応用 へ純化しやすい培養システムと幹細胞特性を実用化 開発の初期過程で事前に予測する評価法を開発し、 AI-新規Naïve型幹細胞評価法を連動させ実用化開 発促進のための新たな技術基盤を構築します。

新規Naïve型幹細胞の創出と品質評価システムの開発


https://www.ncchd.go.jp/sitemap-research.html

高分化能を保有する新型ヒトiPS細胞T-iPS細胞の 有用性実証研究

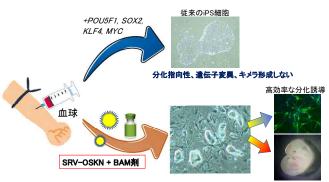
加藤 英政 愛媛大学大学院 医学系研究科 機能組織学講座 准教授

本研究は、ヒトiPS細胞の抱える株間および、同一株内での 分化能のばらつき・ゆらぎを制御することを目的としていま す。そのために愛媛大チームでは、従来の山中因子にDNA 脱メチル化活性を有するTET1を加えて作製した独自開発 のヒトiPS細胞、T-iPS細胞の有用性を示す研究を展開してい

現行ヒトiPS細胞と胚由来のES細胞を比較した場合、一部 のゲノム領域においてヒトiPS細胞のDNAメチル化が亢進し ていることが問題視されるようになっています。これまでの 研究結果によれば、一般的なヒトiPS細胞に比べてT-iPS細胞 では、多くのゲノム特定領域が脱メチル化されていることが 判明しています。一般にメチル化されているゲノム領域は転 写促進活性を失うため、T-iPS細胞の優れた分化能はこれに 起因することが考えられます。引き続き、T-iPS細胞の解析を 通じ、本来ヒト分化多能性幹細胞のもつべき様々な細胞種 への分化効率を明らかにしていきます。

https://www.m.ehime-u.ac.jp/course/%e6%a9%9f%e8%8 3%bd%e7%b5%84%e7%b9%94%e5%ad%a6/

βcateninの翻訳後修飾に立脚した次世代ヒト Naïve型iPS細胞の開発


寺村 岳十 近畿大学 高度先端総合医療センター 再生医療部

ヒトiPS細胞はあらゆる細胞に分化する能力をもっており、 様々な難病治療への応用が期待されています。一方で、細胞に よって目的の組織の作りやすさ(分化効率)が大きく異なって いたり、染色体レベル、塩基レベルでの変異が発生するなど、 改良の余地がありました。最近の研究により、遺伝子導入や複 数の薬剤で処理することで、従来よりも能力の高い「Naïve(ナ イーブ)型」幹細胞へと変化させられることが分かってきました が、再現性や変換効率、安定性などに課題が残っていました。

我々はβカテニンというタンパク質に注目し、低分子化合物 を使って細胞内での翻訳後修飾状態を変化させることで、極め て簡便かつ高効率にナイーブ型幹細胞を作製する方法を開発 しました。

本課題では遺伝子治療技術として開発中のSRV(ステルス RNAベクター)技術と同知見を組み合わせることで、皮膚の細 胞や血液の細胞から直接ナイーブ型iPS細胞を作り出す技術 を確立します。また、この方法で作られたiPS細胞の可能性と安

iPS細胞作製・培養をより簡便に。

全性を詳細に評価し、実用可能な再生医療技術として確立する ことを目指しています。

URL https://www.med.kindai.ac.jp/stemcell/

ヒトiPS細胞株間差の要因となるエピジェネティック 変動領域の同定と細胞特性評価法の創出

西野 光一郎 宮崎大学 農学部獣医学科/医学獣医学総合研究科 教授

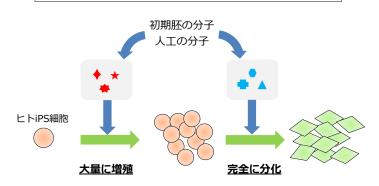
ヒトiPS細胞は、それぞれの株に微 妙な性質の差があることが報告され ています。iPS細胞を用いた再生医療 を進める上で、より高品質で安全・安 心なiPS細胞の選別は重要です。その ためにはiPS細胞そのものの特性や 品質を検定し選別する方法が必要に なります。現在では解析技術の進歩 によって、細胞内の情報を網羅的に 取得することが可能となりました。本 課題では、DNAメチル化というDNA

のラベルの情報を基にiPS細胞の解析を行います。iPS細胞か ら得られる膨大なDNAメチル化情報の処理に人工知能(AI) 技術を使用することで、これまで人の目では見分けがつかな かった微細なiPS細胞株間の差を見つけ出し、iPS細胞の性質 に影響を与える原因を明らかにします。また、その解析結果を

AI技術を活用してiPS細胞を評価する

基盤として、iPS細胞の性質を判別し、使用目的に適したiPS細 胞を選別できるシステムの構築を目指します。当該研究によっ てiPS細胞を用いた再生医療の促進が期待できます。

URL https://www.cc.miyazaki-u.ac.jp/vbiochem/


ヒト多能性幹細胞株を均質にするための培地添加物

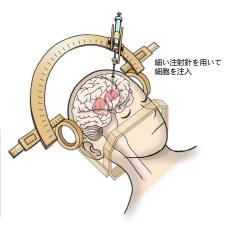
升井 伸治 山梨大学 発生工学研究センター 特任准教授

ヒトの身体は37兆個の細胞からできています。そのた め、再生医療で身体の一部をとりかえる際には、何千万 個から何百億個という、非常にたくさんの細胞が必要に なります。ヒト多能性幹細胞は、無限に増殖する能力と、 身体をつくっているどんな細胞にでも分化できる能力 をもつため、再生医療に用いることが期待されていま す。しかし、ヒト多能性幹細胞を大量に増やすのは高価に なってしまうことと、分化させて移植した際に、完全に分 化しきれなかった細胞から腫瘍ができてしまうこと、の二 点が懸念されています。そこで私たちは、ヒト多能性幹 細胞を安価に増やす技術と、完全に分化させる技術を開 発します。ヒト多能性幹細胞の増殖と分化に作用する新 しい分子をそれぞれ探し出し、それらの分子をタイミン グよく培養液に加えることで、ヒト多能性幹細胞を大量 に増やすことができ、また完全に分化させることができ ると期待されます。

ヒトiPS細胞を均質に増幅し分化させる技術

URL http://nerdb-re.yamanashi.ac.jp/Profiles/348/0034719/profile.html

パーキンソン病に対するヒトiPS細胞由来ドパミン神経前駆細胞の細胞移植による安全性及び有効性を検討する臨床試験(治験)に関する研究


髙橋 淳 京都大学 iPS細胞研究所 教授

パーキンソン病は脳内のドパミン神経細胞が徐々に減少する神経難病で、手足の震えやこわばりから始まり次第に動けなくなってしまいます。そこで細胞移植による治療では、失われたドパミン神経細胞を移植で補って症状の改善を目指します。我々はiPS細胞からドパミン神経細胞を作製する方法を開発し、その安全性と有効性を慎重に検証しました。その結果に基づき、2018年8月に細胞移植の臨床試験(治験)を開始し、同10月に京都大学医学部附属病院において第1例目の手術を行いました。対象となるのは50歳から69歳の7名のパーキ

ンソン病患者で、移植後2年間の経過観察を行い安全性と有効性を評価します。2019年度には3例目までの手術を終え、治験は順調に進んでいます。本治験で安全性と有効性を確認し、細胞移植治療をパーキンソン病に対する標準治療のひとつと

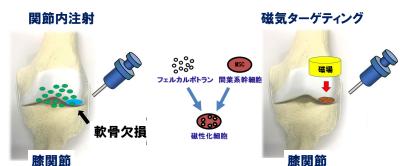
MRIC安全な細胞校与経路を確認

することによって、より多くのパーキンソン病患者を救うことが 我々の目標です。

URL http://www.cira.kyoto-u.ac.jp/jtakahashi/

磁気ターゲティングによる関節軟骨再生の実用化 に関する研究

亀井 直輔 広島大学大学院 整形外科学 准教授



「磁気ターゲティング」という独自の技術を 用いた関節軟骨再生の実用化を目指します。

その対象となる疾患は変形性膝関節症です。変形性膝関節症では加齢などによって膝関節の骨の表面を覆っている軟骨が徐々に障害されて膝の痛みや関節の動きの制限が出ます。この疾患になる患者さんは非常に多く、日本全国に約3000万人いると推測され、の中で約1000万人が膝の痛みや運動制限のために治療を受けています。

骨髄の間葉系幹細胞を、磁気ターゲティングを用いて膝関節へ投与することで、欠損してしまった軟骨を再生させる研究を行ってき

ました。磁気ターゲティングを用いると幹細胞を関節に注射するだけで、磁場による誘導で幹細胞を軟骨が欠損した部分へ 集めて接着させることができるため、体にやさしく効果も高い

簡単・体にやさしいが 有効性が犠牲

簡単・体にやさしいと 高い有効性を両立

軟骨再生治療を行うことができます。実用化のために本年、ベンチャー企業(社名:Flying Cell)を設立しました。今後、治験を開始予定です。

脳梗塞急性期患者を対象とした自家BMSC脳内投与による再生治療の第1相試験(RAINBOW研究)

寳余 清博 北海道大学 総長

脳の血管が破れる、または詰まることで生じる脳卒中はわが国の 死亡原因第4位の重大な病気で、命が助かっても麻痺などの後遺症 を残し日常生活に支障を及ぼします。その様な中、幹細胞を利用した 再生医療が新たな治療法として期待されています。我々は、患者さ ん本人から採取した骨髄間質細胞(bone marrow stromal cell; BMSC:間葉系幹細胞)を用いて、脳梗塞の後遺症軽減を目指した再 生医療の実現を目指しています。患者さん本人の骨髄幹細胞は免疫 反応が他の幹細胞に比較し低いなど有利な点が存在すると考えて います。2017年4月より安全性を主要評価項目とした医師主導治験 (第1相試験)という実際の患者さんへの幹細胞投与研究を開始し、 2020年8月に予定されていた7名の患者への投与およびフォロー アップを終了しています。現在のところ投与した細胞のガン化や副作 用など重篤な合併症は無く、良好な機能回復が得られていると考え ています。今後第2相以降の臨床研究を行うことで本治療法を必要 とする患者さんに届けるために2019年8月に大学発ベンチャー企業 であるRAINBOW社も立ち上げています。これはAMEDの支援を 得てスタートを切った臨床研究を実用化する一つの重要な方法だと 思っています。本研究の成果により、脳梗塞治療に新しい道が切り拓

患者本人の骨髄幹細胞を体外で培養し、脳内の傷ついた場所に注射で戻します。

回復した 患者さん

北大発大学ベンチャー RAINBOW社

かれるだけでなく、再生医療全体の進展にも大いに寄与するものと期待されます。

http://www.neurosurgery-hokudai.jp/ https://rainbowinc.co.jp/

同種歯根膜由来間葉系幹細胞シートによる歯周組 織の再建

岩田 隆紀 東京医科歯科大学大学院 医歯学総合研究科歯周病学分野 教授

我が国における歯周炎の罹患率は40歳以上で40%程度と非常に高く、様々な再生療法が古くから開発されてきているものの、大きな欠損に対する治療技術は存在しないのが現状です。私共は歯周組織再生担当細胞が存在する歯根膜組織に着目し、2011年より臨床研究課題名「自己培養歯根膜細胞シートによる歯周組織の再建」を10例に実施し、安全性ならびに高い有効性を確認していますが、自己細胞採取のためには患者本人の歯の抜歯が必要であることが問題となって

います。そこで本事業においては本治療技術の一般普及を目指して、先のAMED事業において構築済の同種歯根膜由来間葉系幹細胞ストックを用いて、既存治療技術では治すことの出来ない広範な歯周欠損をターゲットとした医師主導治験を開

「同種歯根膜由来間葉系幹細胞シートによる歯周組織の再建」 2018年度 2019年度 2020年度 臨床研究 研究用細胞ストックの移管・製造技術移転 CellSeed IRB後 治験届提出 正成候MSCシートによる 夏歯周病治療技術の開発と 及に向けた取り組み 歯科再生治療の 基盤整備 基礎研究 NGSによる製品核酸情報の解析 従来検査方法との比較検討 NGS機器のバリデーション 迅速・簡便な よる再生医療等製品の新規検査技術の創出 アルゴリズムの修正ならびに最適化と 検査技術確立 費用対効果を考慮した解析深度の決定

始しました。現在は6名の患者さんに対する治験を終了し、結果を解析中です。また、次世代シークエンサーによる安全性・有効性評価試験を出荷する全製品に関して実施し、従来検査法との比較検討によりその有効性を評価していきます。

誘導型抑制性T細胞を用いた臓器移植における免疫寛容誘導を目指した第1/2相多施設共同医師主導治験

内田 浩一郎 順天堂大学 健康総合科学先端研究機構 准教授

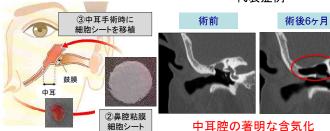
臓器移植は機能不全に陥った臓器を再生させる医療です。 しかし移植臓器を拒絶反応から守るため、免疫抑制剤を生涯 継続して内服する必要があり、生体の恒常性維持に重要な免 疫機構までも抑制してしまいます。その結果、感染症・発癌・代 謝性疾患などの副作用のリスクにさらされ続けることになって います。

順天堂大学が開発した誘導型抑制性T細胞は、移植臓器に対して選択的に免疫を抑制し、拒絶反応の発症を抑え、免疫寛容という免疫抑制剤を中断できる免疫状態を誘導することができます。 生体肝移植患者さん10人に臨床試験され、7人で免疫抑制剤からの完全離脱(免疫寛容)が実現しました。この世界的に先駆する有効性を得た事から、誘導型抑制性T細胞を再生医療等製品としての承認を目指し、日本移植学会の後援の下、医師主導治験を順天堂大学主管のもと、肝移植の実績が豊富で、免疫寛容研究に詳しい広島大学、長崎大学、東京女子医科大学にて実施します。また、誘導型抑制性T細胞は令和

2年度の厚生労働省の先駆け審査指定制度対象品目に指定されました。日本発の再生医療研究シーズを日本で育てあげ世界に発信していく体制で進めています。

中耳真珠腫および癒着性中耳炎に対する自己由来 鼻腔粘膜細胞シート移植による医師主導治験

小島 博己 東京慈恵会医科大学 医学部 耳鼻咽喉科学教室 教授


中耳真珠腫や癒着性中耳炎は手術で完治の難しい難治性の病気であり、耳漏や難聴をもたらし、めまい、顔面神経麻痺、髄膜炎などをきたす場合もあります。治療は手術ですが、病変の除去に伴い中耳粘膜が欠損してしまうため、病態の再発および難聴やその他手術による後遺症が発生するケースが少なくありません。

我々は、中耳粘膜を早期に再生させて術後経過を改善することを目的として、中耳手術後の露出した骨面に自己鼻腔粘膜細胞シートを移植する再生治療を考案し、15例の臨床研究に成功してきました。いずれの症例においても有害事象や合併症がなく、中耳の含気による生理的な耳の形態の再建、再発予防、聴力改善に良好な経過が得られて

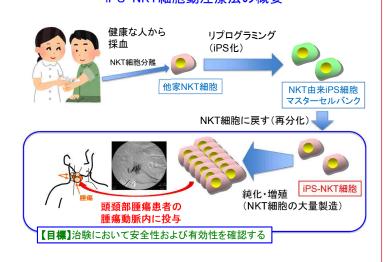
います。この新規治療を実用化させて多くの難治性中耳炎患者を救済したいと考えております。現在は、医師主導治験開始

鼻腔粘膜細胞シートを用いた中耳粘膜再生治療

代表症例

- ・多施設を含む15例の臨床研究を実施、有害事象や合併症はなく含気化などに良好な経過
- ・本邦耳鼻咽喉科初の再生医療実用化研究、培養細胞を中耳へ移植する世界初の医療
- 医師主導治験の準備中

①鼻腔粘膜を採取

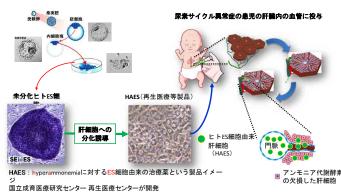

のために非臨床安全性試験や治験実施体制整備を行っております。

再発・進行頭頸部がん患者を対象としたiPS-NKT細胞動注療法に関する第1相試験

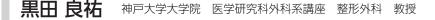
古関 明彦 理化学研究所 生命医科学研究センター チームリーダー

ナチュラルキラーT細胞(NKT細胞)は強い抗がん活 性を持つT細胞の一種です。このNKT細胞の働きを強め る免疫療法は他の治療法と比べても有効であり、千葉 大学病院で先進医療Bとして実施されています。しかし、 がんに伴うNKT細胞の減少や機能不全により本治療法 は希望者の約3割にしか適用できませんので、NKT細胞 の補充が可能になればより多くの患者様がこの治療法 を受けられます。そこで私たちは、NKT細胞からiPS細胞 を作製し、そこから再度NKT細胞(iPS-NKT細胞)を大量 に作り出す技術を開発しました。この技術を用いて作製 した治験用iPS-NKT細胞の品質、非臨床での安全性及 び有効性が確認できましたので、千葉大学において頭頸 部がんを対象とした第一相医師主導治験を開始しまし た。本治験では、頭頸部がんの患者様のがん栄養動脈に iPS-NKT細胞を投与し、安全性を確認すると共に有効性 についても検証します。

iPS-NKT細胞動注療法の概要


URL https://www.riken.jp/pr/news/2020/20200629_2/index.html

重症高アンモニア血症を生じる尿素サイクル異常症に対するヒト胚性幹(ES)細胞由来再生医療等製品に関する医師主導治験と承認申請に向けた取り組み


梅澤 明弘 国立成育医療研究センター 研究所再生医療センター センター長

重症高アンモニア血症は、体内で出来た尿素を代謝する酵素の遺伝的な欠損により生じる先天代謝異常症です。出生8万人あたり1人の頻度で発症し、アンモニアによる神経障害が起きて、死亡率も高い病気です。肝臓移植がこの病気の根本的な治療法とされていますが、低体重の新生児では手術に耐えられないこと、またドナーも不足していることから、移植可能となるまでの橋渡しの手段が必要です。ヒト胚性幹(ES)細胞は、体の全ての細胞に分化する能力を有する細胞です。この細胞から肝細胞を製造し、新生児に移植することを目指した医師主導治験を行っています。国立成育医療研究センターでは、2019年10月21日に1例目の治験を行いました。これは、国立成育医療研究センターで作製したヒトES細胞由来の肝細胞(HAES)を使い、ヒトに対して行った臨床試験で、治療の成功は世界初の快挙です。これまでの肝細胞移植治療では、肝細胞の安定供給が得ら

れないことが最大の課題でしたが、ES細胞から肝細胞を安定して作製することができ、その安全性と効果を検証する今回の医師主導治験=「橋渡しの治療」が成功したことにより、今後は、肝移植までたどり着けなかった小さな命を、より安全に肝移植までつなげることが期待されます。

自家末梢血CD34陽性細胞移植による骨・血管再生療法に関する医師主導治験

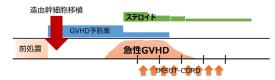
骨折患者では保存的治療(ギプス等)や観血的骨接合 術による骨折部の整復と強固な固定で治癒しますが、全 体の骨折の5-10% は治療後6 ヶ月を経過しても骨癒合 が得られず、血行不全を病態とする難治性骨折(偽関節) に陥り著しいQOL の低下を招きます。現行の治療では骨 癒合に至るまで長期間を要し、最悪のケースでは骨癒合 が得られず患肢切断に至ることもあります。私たちは前臨 床研究において、末梢血CD34 陽性細胞が血管の幹細胞 としてだけでなく骨の幹細胞としても機能しており、血管 再生だけでなく骨再生も通じて骨折治癒に貢献すること を確認しました。この基礎研究成果を踏まえ、難治性骨折 患者を対象に臨床研究を行い、本治療の有効性・安全性 が示唆されました。医療技術としての定着・普及を目指す ため、現在、多施設共同医師主導治験を実施中であり、標 準治療では治癒をみることが困難な難治性骨折で苦しむ 多くの人々がその恩恵を受けることを確信します。

http://www.kobe-seikei.com/ http://www.ibri-kobe.org/fracture/index.html

同種臍帯由来間葉系細胞を用いた重症急性移植片 対宿主病に対する医師主導治験

長村登紀子 東京大学 医科学研究所 准教授

重症急性移植片対宿主病(GVHD)は、造血幹細胞移植後にドナーの免疫細胞が過剰に活性化し、標準治療抵抗性の場合には、極めて予後不良となります。近年、間葉系細胞(MSC)に抗炎症等の免疫調整能や組織修復能があることが分かり、重症急性GVHDに対して骨髄由来MSCが市販されています。本研究では、MSCのソースとして臍帯に注目し、再生医療等製品として東京大学医科学研究所にて製造し、造血幹細胞移植後の予後不良の重症急性GVHDに対する多施設共同、非盲検、単群試験として医師主導治験(第1相)を実施し、安全性や有効性を検証することを目的としています。2018年7月から患者さんへの投与が始まり、投与


による重篤な有害事象を認めず、2020年度6月末には登録が終了しました。現在、安全性・有効性の検証、投与に伴う免疫学的変化や有効性の指標となるバイオマーカーの探索を精力的に行っています。本製品は、低抗原性かつ抗炎症効果と高い増

①出産・IC・臍帯採取 (産婦人科)

②東大医科研臍帯血・臍帯バンクにて 臍帯由来間葉系細胞 (IMSUT-CORDの製造

③造血幹細胞移植後の重症急性移植片対宿主病に対する 医師主導治験第1相 実施

(治験実施施設:東京大学医科学研究所・都立駒込病院・虎の門病院)

4.免疫解析・有効性のバイオマーカーの探索

殖能を有しており、他の疾患への応用も含めて同種MSCソースとして有用と考えています。

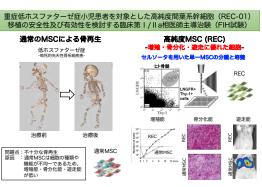
url http://imsutcord.umin.jp

虚血性心筋症に対するヒト(同種)iPS細胞由来心筋細胞シートの臨床試験

澤 芳樹 大阪大学大学院 医学系研究科 教授

近年重症心不全は高齢化とともに加速度的に増加しつ つあり、年間約4万3千人が死亡している重篤な病です。 その根本的治療は、心臓移植と人工心臓などの置換型医 療ですが、ドナーの不足や人工心臓の耐久性などの多く の課題があり、心筋の再生を目指す治療法の開発が急務 とされています。当課題では、京都大学iPS細胞研究所で 樹立された臨床使用が可能なグレードのiPS細胞を用い てマスターセルバンクを構築し、この細胞からiPS 心筋細 胞を大量に効率良く培養し、未分化細胞除去方法を組み 合わせ、iPS細胞由来心筋細胞シートの作製法を開発しま した。更に、各種動物モデル等を用いてiPS細胞由来心筋 細胞シート移植が重症心不全に対し改善効果があること を示し、有効性と安全性を確立しました。規制当局との面 談を重ね、2019年11月より虚血性心筋症を対象として 医師主導治験を開始しており、2020年1月に世界で初め て、iPS心筋細胞シートのヒトへの移植が行われました。

iPS心筋シートを用いた再生医療の概要

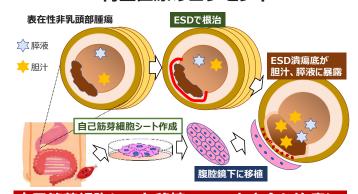


重症低ホスファターゼ症小児患者を対象とした高純 度間葉系幹細胞(REC_01)移植の安全性及び有効 性を検討する臨床第I/IIa相医師主導治験(FIH試験)

竹谷健 島根大学 教授

先天性骨系統疾患(CSD)は生まれつき骨が十分にできないため、日常生活が著しく障害されるだけでなく命に関わることもある病気ですが、根治療法はありません。我々はこれまでCSDの1つである低ホスファターゼ症(HPP)に対して同種間葉

系幹細胞移植を行うことにより世界で初めて全身骨の再生に成功しましたが、正常な骨の再生に至りませんでした。そこで、増殖分化能が極めて高い高純度ヒト間葉系幹細胞(REC)を用いて、重症HPPの小児患者さんを対象とした安全性と有効性を検討する医師主導治験を行います。RECは高い増殖能、遊走


能、分化能を特長とする国内外を含めて唯一の超高純度ヒト 骨髄間葉系幹細胞で、その有効性と安全性を動物実験で示すことができています。したがって、我々はRECを用いた同種移植治療がHPPだけでなく多くのCSDの根治療法として適応されることを目指してこの治験を成功させたいと思っています。

表在性非乳頭部十二指腸腫瘍に対する内視鏡治療と腹腔鏡手術と再生医療を組み合わせた革新的な術式の開発

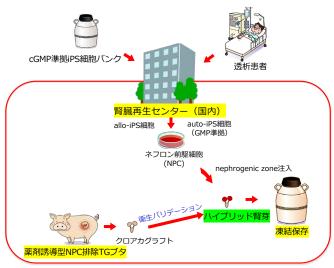
金高賢悟 長崎大学大学院 医歯薬学総合研究科 教授

表在型非乳頭部十二指腸腫瘍は全消化管腫瘍の1-2% という低頻度ゆえに、まだ標準治療が確立されていま せん。最近では開腹手術に代わり内視鏡粘膜下層剥離術 (ESD)や腹腔鏡内視鏡合同切除(LECS)を選択する施設 も増えてきました。しかし腫瘍が大きい場合はESD術中や 術後に穿孔が発生することがあります。クリップや人工素 材を用いた穿孔予防が試みられていますが、完全な予防 は難しいのが現状です。またLECSは高度な技術が必要な ことや腹腔内に腫瘍が散布する危険があるときは実施で きないため、標準治療とはなっていません。私達はこれま での研究で、十二指腸ESD後の筋芽細胞シート貼付が術 中/遅発性穿孔の予防に有効であることを明らかにしまし た。本研究では、あらかじめ大腿筋から採取して培養・調製 した自家筋芽細胞シートを、腹腔鏡を用いて十二指腸ESD 後の潰瘍部に漿膜側から貼付するという穿孔予防の新た な術式を確立し、医師主導治験への移行を目指します。

表在性非乳頭部十二指腸腫瘍に対する 再生医療のコンセプト

自己筋芽細胞シート移植でESDを安全な治療に

URL


URL http://www.mdp.nagasaki-u.ac.jp/research/juten_kenkyu/index.html

透析回避を目指したiPS細胞由来ハイブリッド腎芽 による新世代腎不全治療法開発

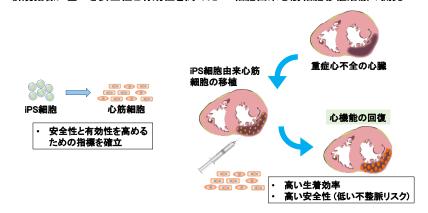
横尾隆 東京慈恵会医科大学 腎臓・高血圧内科 教技

透析医療や移植医療の抱える患者負担や経済的問題が 明らかになるにつれ、腎臓再生医療への期待は高まってき ています。しかし腎臓はメサンギウム細胞や尿細管細胞な ど複数の細胞群からなるネフロンが約100万個集まって できている非常に複雑な構造を持ち、この構造を持たな ければ尿生成などの腎機能が発揮できないため、最も再 生が難しい臓器とされてきました。しかし我々は発生の過 程で幹細胞から臓器まで分化誘導する環境(臓器発生ニッ チ)を異種動物から借用して患者由来腎臓前駆細胞から腎 臓を再生するという「再生臓器ニッチ法」を開発しました。 小動物を用いた実験では、既に腎臓前駆細胞から尿性性 能を獲得した再生腎臓の樹立に成功しているため、現在ヒ トへの臨床応用を想定してヒトiPS細胞由来ネフロン前駆 細胞を用いてカニクイザルで前臨床試験を行なっており ます。いくつかの問題点が抽出され、システムの改良作業 を進めているところです。

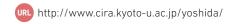
https://jikei-kidneyht.jp/

新規指標に基づき安全性と有効性を高めた iPS細胞由来心筋細胞移植治療の開発

吉田 善紀 京都大学 iPS細胞研究所 准教授



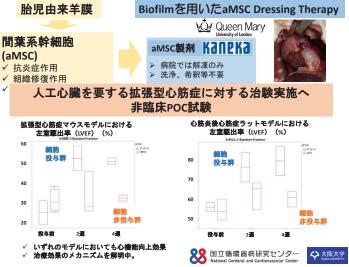
重症心不全は死亡率が非常に高く、薬物治療に抵抗性の場合は心臓移植や埋め込み型補助人工心臓など有効な治療が限られていますが、これらの治療にかわる新たな治療としてヒトiPS細胞由来心筋細胞の移植による再生医療の開発が期待されています。しかし、心臓への細胞移植治療は移植した心筋細胞の長期生着効率の低さや細胞移植後に生じる不整脈などの問題点が指摘されています。


本研究プロジェクトではこれまでに開発した心筋細胞の特性を評価する技術や細

胞移植効率を最適化する技術を用いることによって、これらの問題点を解決できる、生着効率が高くかつ催不整脈性の低い、有効かつ安全なヒトiPS細胞由来心筋細胞の作製法の開発を行います。さらに、臨床での実用化を目標として品質評価指標を

新規指標に基づき安全性と有効性を高めたiPS細胞由来心筋細胞移植治療の開発

確立し、サル・ブタなどの中型動物で安全性及び有効性を実証 するための試験を実施します。



他家羊膜間葉系幹細胞を用いた重症特発性拡張型 心筋症に対する新規治療の開発

藤田 知之 国立循環器病研究センター 心臓血管外科

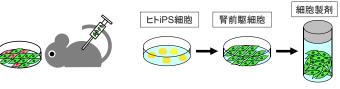
拡張型心筋症は難病指定を受けている進行性の致死 的心臓病です。心臓移植が根治的治療ですが、心臓移植 を受けられない患者さんのために、病気の進行を遅らせ る治療として細胞移植による再生治療が開発されてきま した。本研究では、まだ世界的にも臨床応用されていな い胎児由来細胞である羊膜間葉系幹細胞を用いた拡張 型心筋症に対する再生治療を開発します。マウスとラット の異なる拡張型心筋症モデルに対して、ヒト由来の羊膜 間葉系幹細胞を移植し、治療前後の心機能の推移、心臓 組織の変化に加えて、モデル動物の生存率や細胞の生着 率を見ることで、本治療の安全性と治療効果を検証し、ま たそのメカニズムを解明します。もって医師主導治験の ための基礎データとします。この細胞は胎児由来の細胞 であるが故にポテンシャルが高く、また免疫炎症反応を 惹起しないという特徴があります。一刻も早く、よい治療 を難病に苦しむ患者さんに届けるべく研究を行います。

http://www.ncvc.go.jp/hospital/section/cvs/hcs/index.html

iPS細胞由来腎前駆細胞を用いた慢性腎臓病に対 する細胞療法の製造法開発と非臨床試験実施

長船 健二 京都大学 iPS細胞研究所 教授

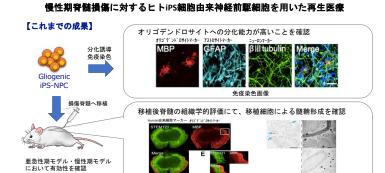
本研究課題では、ヒトiPS細胞から作製した腎臓のも とになる胎児期の腎前駆細胞を慢性腎臓病(CKD)患 者の腎臓に特殊な器具(細胞移植デバイス)を用いて 移植する新規の再生医療の開発を行います。そして、 腎臓の障害を治療しCKDの進行を抑制することで、 CKD患者の透析療法への導入を遅らせることを目指 します。その実現のために、本事業においては、①ブタ などの大動物を用いた細胞移植デバイスの動作性と 安全性の確認、移植方法の確立、②機器を用いた拡大 培養を含む腎前駆細胞の製造プロセス開発とスケー ルアップ、③非臨床安全性試験、を実施します。本事業 の終了後に、移植腎に発症するCKDを対象疾患とし て細胞移植の臨床試験開始を目指します。そして、臨 床POC取得後に、より患者数の多い一般のCKD患者 に対する臨床試験へと展開を行います。


iPS細胞由来腎前駆細胞を用いた慢性腎臓病に対する 細胞療法の製造法開発と非臨床試験実施

① 大動物を用いた移植法開発とデバイスの動作性安全性確認

② 非臨床安全性試験

③ 臨床試験に向けた製造プロセス開発


URL https://www.cira.kyoto-u.ac.jp/j/research/osafune_summary.html

慢性期脊髄損傷に対するヒトiPS細胞由来神経前駆 細胞を用いた再生医療

中村 雅也 慶應義塾大学 医学部 整形外科学教室 教授

これまでの研究成果から、重度の慢性期脊髄不全損 傷患者さんの場合、リハビリテーション治療単独では大 幅な機能改善は期待しづらいと考えられています。以 前、私達はヒトiPS細胞から誘導したオリゴデンドロサイ トを多く含む神経前駆細胞(Gliogenic iPS-NPCs)を 亜急性期の損傷脊髄に移植すると運動機能の改善が 得られることを報告しました。最近の研究成果から、こ の細胞は慢性期に移植しても治療効果を期待できると 考えています。そこで本研究事業では、大日本住友製 薬株式会社、および村山医療センターと連携し、リハビ リテーション治療単独では機能改善が得られないよう な重度の慢性期脊髄不全損傷患者を対象とする新規 治療法として、Gliogenic iPS-NPC移植治療を開発す る方針です。細胞の誘導手法や品質評価基準などを確 立し、必要な非臨床試験データを取得して2023年度 に治験届を提出することを目標としています。

【本事業の目的】

これまでの研究成果をもとに、大日本住友製薬株式会社、村山医療センターと協力して

- ・臨床研究用プロトコールの策定
- ・臨床用細胞の製造法・品質評価法の策定
- ・移植用デバイスの開発

を行い、慢性期脊髄損傷患者に対する医師主導治験の開始を目指す。

URL https://www.keio-ortho.jp/orthopaedic/group05_01.html

成人T細胞白血病/リンパ腫に対するHTLV-1p40Tax特異的T細胞受容体遺伝子導入アロ $\gamma\delta$ -T細胞輸注療法の研究開発

藤原 弘 三重大学大学院 医学系研究科 個別化がん免疫治療学・特任准教授

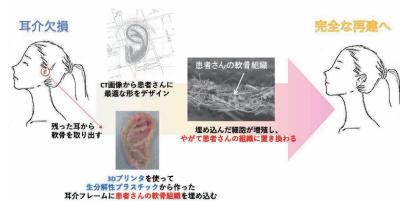
成人T細胞白血病/リンパ腫(ATL)は、HTLV-1ウイルス感染Tリンパ球のがんで60歳以上に好発します。現状では、同種(アロ)骨髄移植だけが治癒できる可能性があります。しかし、アロ骨髄移植は、移植片対宿主病(GVHD)など強い治療関連毒性を伴うため、大部分のATL患者では年齢的に実施が困難です。

そこで、私たちは、全く新しいアロ細胞免疫療法を開発しました。ここでは、健常人ドナー末梢血中のアロγδ-T細胞を1週間程度の培養で効率よく増やすと同時に、ATL細胞を識別して攻撃するためのセンサーとして、HTLV-1ウイルスが作るp40Taxタンパクを認識するT細胞受容体遺伝子を導入して治療に使います。動物モデルの検討でも、この細胞は、ATL細胞を識別して強く攻撃する一方で、正常組織に対するGVHDは全く認めません。私たちは、この細胞を使ったATLに対する新しい治療法の臨床試験を準備しています。

URL http://www.shikuken.jp

PCL/PGA 複合スキャホールドと微細切軟骨組織 を用いた耳介再生医療の実用化

磯貝 典孝 近畿大学 医学部 形成外科 教授



耳介は外観上とても大切な器官ですが、特殊 でデリケートな構造ゆえ、その再建は困難を極 めます。小耳症のような先天性耳介形成異常だ けでなく、腫瘍、交通事故や火傷などで後天的 に耳介欠損が生じてしまうこともあります。

今までは、患者さんの肋軟骨から手作業で作 製した擬似耳介、あるいはプラスチック製の耳 介を移植する方法がありましたが、前者は患者 さんの負担が大きく、後者には感染の恐れと異 物性が課題でした。

私たちは、医学、生物学、人間工学など様々 な角度から人工耳介フレームの開発を行ってきました。また同 時に、可能な限り最小の軟骨から安全かつ最大の増幅効率を 得るための技術開発を進め、臨床応用が可能なレベルの人工 耳介を開発しました。

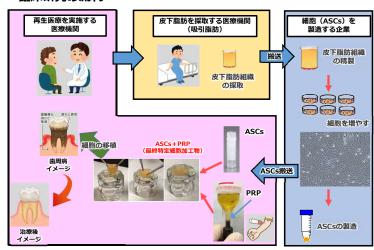
このプロジェクトでは、より多くの患者さんに一日も早く安

全な人工耳介を届けられるよう、治験を目指した非臨床安全性 試験の実施と、実用化に向けた製造プロトコルの開発を行い ます。

URL https://www.med.kindai.ac.jp/stemcell/

自己脂肪組織幹細胞及び多血小板血漿を用いた歯 周組織再生医療技術の妥当性及び提供方法の検討

飛田 護邦 順天堂大学 革新的医療技術開発研究センター 先任准教授



歯周病は、歯牙周囲の歯槽骨、セメント質、歯根 膜等から構成される歯周組織を破壊させることで、 □腔衛生を著しく低下させるだけでなく、糖尿病、 心臓病、肺炎等の全身疾患のリスク因子でもあり ます。近年、歯周組織を再生させる治療法の開発 研究が進み、再生医療等安全性確保法下におい て、脂肪組織幹細胞(ASCs)や多血小板血漿(PRP) を用いた歯周組織再生医療が提供されています が、まだ十分に、効果や妥当性等が明らかになって いない可能性があります。

そこで、我々は、ASCsとPRPの2種類を混合した 細胞加工物を用いた歯周組織再生医療について の有効性、妥当性、及び提供方法の適切性を検討 し、適切な再生医療を、再び、医療へとフィードバッ

クさせることを目的とした研究を進めています。臨床研究に参 加いただいた患者さんは、細胞移植、または既存治療(エムド

臨床研究の流れ

ゲイン)のどちらかを受けていただきます。治療9ヶ月後の効果 を比較、検証しています。

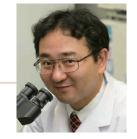
効率的な再生医療の提供に資する課題解決のため の研究

中谷 知右 医薬基盤・健康・栄養研究所 開発振興部 プログラムオフィサー

再生医療等製品の開発を目指した研究の実用化には、保健医療への寄与度、研究計画の妥当性、研究者の実績、実施体制、実用化の見込みなどに基づく包括的な事前評価に加えて、常に研究の進捗状況に応じた計画の修正が必要です。また、PMDAとの綿密な連携を図ることによる企業等への導出を見据えた一体的な工程管理も重要です。医薬基盤・健康・栄養研究所では、医薬品等開発研究PDCAマネジメント業務等を通して、医薬品等開発の導出を見据えた包括的な進捗

AMEDとともに行う進捗管理 計画、実行の 採択 応募 指導・助言 研究計画書 事前評価委員による Plan Do 計画の進捗 評価 (AMED) 修正案を PDCA サイクル を報告 評価 Chec 修正の 中間・事後評価委員による 指導・助言 評価 (AMED)

管理並びに指導・助言を行ってきました。これまでの経験を踏まえ、本研究課題では、再生医療実用化研究事業における個別課題に対し、AMEDと連携して研究遂行上の問題点の整理、助言


等を通じ、きめ細かな進捗管理の支援をPDCAサイクルにより行い、①研究成果を効率的に再生医療実用化へと導く、②その実用化までのコスト削減に繋げる、ことを目指します。

医薬基盤・健康・栄養研究所が

多能性幹細胞利用再生医療での造腫瘍性とがん関連ゲノム異常の関連にかかる規制科学的検討

松山 晃文

大阪府立病院機構 大阪はびきの医療センター 次世代創薬創生センター センター長

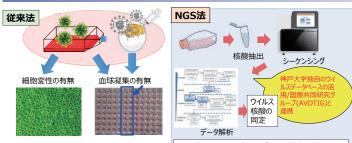
多能性幹細胞にはgenomic instability があり、造腫瘍性の懸念はつねに議論されてきました。がんゲノムにかかる知見が蓄積されつつある今日、被験者・患者保護の観点から、多能性幹細胞を用いる再生医療での造腫瘍性についての規制科学が求められ、大きなagendaとして残されています。本課題では、多能性幹細胞を用いる再生医療における原材料として多能性幹細胞およびヒトに投与する多能性幹細胞由来細胞に関し、ゲノム評価に寄与する科学的知見を得ます。具体的には、1)ヒト発がんに寄与する遺伝子のリスト提示と意義付け、2)遺伝

子変異・構造異常・epigenomeの意義付け、3)ゲノム評価にかかる技術の適切性評価および開発、4)細胞集団のごく一部に存在する異常の検出手法と意義付け、を行います。最終的に、

in vivo 造腫瘍性評価とゲノム評価が相互補完的に造腫瘍性評価に資する規制科学を目指します。

細胞加工製品における次世代シークエンサーを用い たウイルス安全性実現のための多施設国際共同研究

内田 和久 神戸大学 大学院科学技術イノベーション研究科



細胞加工製品は、ドナーから得た細胞組織、培養 時に使われる血清や培地への添加物など多様な生 物由来原料を使って製造されるためウイルスによる 汚染の可能性が否定できません。また最終製品に 至るまで「細胞」を含む製品のため、ウイルスの不活 化・除去が困難です。製品の安全性を確保するため には高いウイルス検出感度、網羅性、迅速性を備え た新規ウイルス試験法の開発が望まれています。

欧米ではワクチン関連の規制当局の研究者,アカ デミア,ワクチン製造会社を中心に次世代シークエ ンサー(NGS)を利用してウイルス安全性を確保しよ うという国際共同研究グループ(AVDTIG)が組織 されています。我々はAVDTIGが主催する国際的

な多施設共同研究に参加・連携すると同時に、日本独自の取り 組みとして「NGSを活用した細胞加工製品のウイルス安全性 確保」の観点から研究を行い、ガイドライン化に向けた取り組

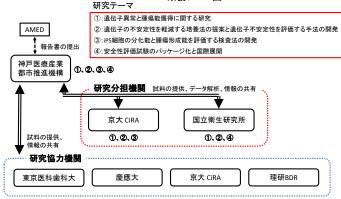
細胞加工製品の安全性確保のためNGSによるウイルス試験法を実用化する

- 検出できるウイルス種がごく限られる
- 試験にはウイルス取扱い施設、技術者が必要
- 時間とコストがかかる
- 既知のウイルス全てのデータを検索に使う
- ウイルス取扱い施設、技術者を必要としない
- 短時間/低コスト

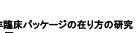
NGSを用いることにより従来法では検出することができなかった ウイルス種も検出可能になる

みを行っています。

URL http://www.egbrc.kobe-u.ac.jp/research_unit/biologics.html


細胞加工物の腫瘍形成能を評価する 非臨床パッケージの在り方の研究

川真田 伸 神戸医療産業都市推進機構 細胞療法研究開発センター センター長


本研究は、AMED RS事業「多能性幹細胞の安全性ガイ ドライン案策定(平成28年度~30年度)」を引継ぎ、一連の 解析結果を纏めること、及び腫瘍形成に関連すると考えら れる遺伝子の異常を抑える培養方法の提案や遺伝子異常 を早期に発見し評価する検査方法を開発することを目的と しております。また、本研究で得られた知見を国際関連学会 で発表することで、世界の細胞治療の進展にも貢献でき、 我が国の国際競争力の向上にも繋がると考えています。

本研究では、研究分担機関(iPS細胞研究所:CiRA、国立 医薬品食品衛生研究所等)及び研究協力機関(東京医科歯 科大学、慶應大学、京都大学、理研BDR)と連携し、試料の 提供、データ解析及び情報の共有を行い、その成果と現在 までの知見を合わせた合同討議の上で、リスク管理の考え た方に沿った培養方法・造腫瘍能検査法・評価法が明示さ れ、多能性幹細胞を用いた細胞治療の安全性の向上に貢 献できると考えております。

細胞加工物の腫瘍形成能を評価する非臨床パッケージの在り方の研究 業務フロ一図

URL https://www.fbri-kobe.org/rdc/

再生医療に資する細胞品質特性指標の探索法の 開発

理化学研究所 科技ハブ産連本部 予防医療・診断技術開発プログラム 河合 純 副プログラムディレクター

再生医療等製品としての培養ヒト間葉系幹細胞 (MSC)は急速に実用化が進みつつある一方で、十分 にその特性を評価する技術やエビデンスが整備され ておらず、そのために標準化や国際化もされていない のが現状です。そこで先鋭的な技術と知識をもつ理化 学研究所、国立医薬品食品衛生研究所、国立成育医療 研究センターがタッグを組み、企業の動向やニーズも 参考にし、細胞特性を理解する技術基盤の構築とその 標準化をめざします。特性の評価手法のゴールデンス タンダードがない細胞医薬において、きわめて多様で ありながら医療応用がすでに始まっているMSCを取 り上げ、わが国が得意なRNA解析技術を強みとしてオ ミックス解析と機能解析によるエビデンスを創出し、 特性理解の基本形を示し世界標準にすることをめざし ます。標準化した技術基盤を構築することは再生医療 と関連産業を大きく推進することが期待されます。

(目的)

間葉系幹細胞/間葉系間質細胞(MSC)について品質・非臨床評価 手法を開発し、エビデンスデータをもって、国際標準化を図る。

(目標・アウトプット)

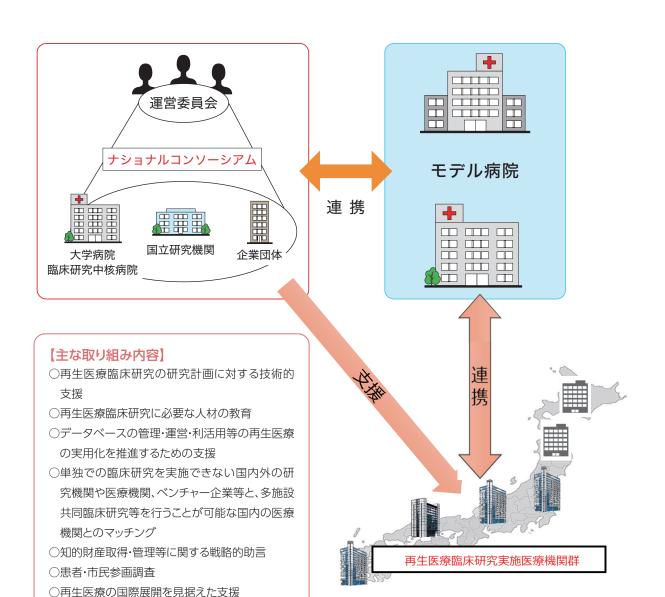
品質特性指標の 探索パイプラインの開発

多様性の**データ基盤**の 構築

(意義・成果・波及効果)

- ・曖昧模糊としたMSCの細胞特性を科学的に記述し、議論の土台となる
- ・ 国際標準化の主張点を構築し、議論の**主導権の確保**に貢献する
- さまざまな再生医療等製品の迅速かつ経済的な開発の推進に寄与するモデ ルを提供する

再生医療臨床研究促進基盤整備事業


Project to Build Foundation for Promoting Clinical Research of Regenerative Medicine

再生医療に関する臨床研究について、平成26年9月に世界で初めてiPS 細胞から作製された網膜組織が患者に移植される等、我が国はこれまでに多くの成果を上げてきました。再生医療の分野において、我が国は最先端の技術を有していますが、他国との競争は熾烈であり、トップランナーに続くシーズを創出し、円滑に臨床研究につなげるには、再生医療等研究の基盤整備への取り組みが重要です。

●再生医療等臨床研究再生医療ナショナルコンソーシアムの実現

本事業は、日本再生医療学会を中心に、大学病院や企業団体が参画する連合体(ナショナルコンソーシアム)を構築し、再生医療の 知識・経験を有する再生医療臨床研究実施拠点機関といった医療機関等と連携して、再生医療の実用化を推進するための支援を行っ ています。

これにより、再生医療等臨床研究等の基盤を整備し、再生医療臨床研究の円滑な実施を支援するとともに、研究の効率化、標準化、コストの削減、実施件数の増加等を図ります。

再生医療等臨床研究を支援する再生医療ナショナルコンソーシアムの実現

岡田 潔 日本再生医療学会 常務理事

再生医療等臨床研究は、再生医療関連新法や医薬品医療機器等法の施行以降、ますますの増加が期待されていますが、これまで限られた機関でしか実施されてこなかったのには、再生医療等臨床研究に関して、その経験、ノウハウ、臨床データが共有されていない現状があります。日本再生医療学会では、オールジャパンでの臨床研究の実施支援、教育、臨床研究データの集積を可能とするコンソーシアムを形成し、再生医療実現拠点ネットワーク事業の成果と連携しつつ、iPS細胞等臨床研

究推進モデル事業の対象機関を分担機関として組み入れ、緊密な協力体制の構築を目指しています。本コンソーシアムの支援により、全国の医療機関で再生医療等の実施がさらに推進されるとともに、提供計画や実施医療機関、細胞培養加工施設、認定再生医療等委員会の質の向上が期待されます。将来的には研究者と企業をマッチングすることで、再生医療等の実用化の促進も進めて参ります。

URL https://nc.jsrm.jp/

難治性疾患実用化研究事業

研究開発課題名/補助事業課題名	研究開発担当者
拡張型心筋症に対する革新的な心筋再生遺伝子治療 薬の開発	筑波大学 医学医療系 循環器内科学 教授 家田 真樹
X連鎖高IgM症候群に対する改良型Cas9を用いたゲノム編集技術によるT細胞遺伝子治療法の開発	国立成育医療研究センター 成育遺伝研究部 疾患遺伝子構造研究室 室長 内山 徹
神経保護因子Necdinの発現上昇による筋萎縮性側索 硬化症の新規治療法の創出	大阪大学大学院 医学系研究科 神経内科学 教授 望月 秀樹
分子病態に基づく筋萎縮性側索硬化症の遺伝子治療 開発	自治医科大学 医学部 内科学講座 神経内科学部門 教授 村松 慎一
ナチュラルキラーT細胞活性化による慢性炎症制御に 基づく新たな心筋症治療の実用化	九州大学大学院 医学研究院 教授 筒井 裕之
網膜色素変性に対する視細胞保護遺伝子治療の医師 主導治験	宮崎大学 医学部 教授 池田 康博
STAT3変異により発症する高IgE症候群に対する改良型Cas9を用いた造血幹細胞遺伝子治療の開発	国立成育医療研究センター 遺伝子細胞治療推進センター センター長 小野寺 雅史
重症劣性栄養障害型表皮水疱症に対する非侵襲性か つ高効率な間葉系幹細胞遺伝子治療法の開発	大阪大学大学院 医学系研究科 寄附講座 教授 玉井 克人
内耳遺伝子治療法による遺伝性難聴の根本的治療法 の開発	順天堂大学 医学部 耳鼻咽喉科学講座 准教授 神谷 和作
心ファブリー病および拡張型心筋症に対する心臓標 的AAVベクターによる遺伝子治療法の開発	大阪大学大学院 医学系研究科 循環器内科学 講師 朝野 仁裕
新規AAVベクターによる肝臓をターゲットにした先 天代謝異常症の遺伝子治療開発	自治医科大学 医学部 小児科 准教授 村松 一洋
機能的に安定な自己誘導型制御性T細胞による尋常性 天疱瘡に対する細胞療法の開発	慶應義塾大学 医学部 教授 天谷 雅行
筋萎縮性側索硬化症(ALS)に対する遺伝子治療法 の開発	京都大学 iPS細胞研究所 教授 井上 治久
Niemann-Pick 病C型に対する遺伝子治療開発	自治医科大学 医学部 小児科学 教授 山形 崇倫
家族性LCAT欠損症を対象としたLCAT-GMAC治療実 用化に向けた医師主導治験	千葉大学 医学部附属病院糖尿病 代謝・内分泌内科 教授 横手 幸太郎

革新的がん医療実用化研究事業

	研究開発担当者
アンメットメディカルニーズへの迅速対応を可能に する遺伝子治療法に関する研究	産業技術総合研究所 バイオメディカル研究部門 上級主任研究員
「細胞レセプター疑似抗体及びGITR細胞内ドメインを	間世田 英明 三重大学大学院 医学系研究科 個別化がん免疫治療学 准教授
	宮原 慶裕 京都府立医科大学大学院 医学研究科
- · · · · ·	小児科学 字内講師 柳生 茂希 鹿児島大学
独自開発の革新的な増殖制御型アデノウイルスの肉 腫への承認申請を目指した医師主導治験	学術研究院医歯学域医学系/鹿児島大学病院 教授 探索的医療開発センター長 小戝 健一郎
	東京大学 医科学研究所 先端医療研究センター 先端がん治療分野 教授 歴史 具紀
世代を表現である。AdSOCS3を用いた新規遺伝子治療の医師主導治験に関する研究	高知大学 教育研究部 医療学系臨床医学部門 教授 付 哲治
固形がんに対するIL-7/CCL19産生型CAR-T細胞療法の 研究開発	山口大学大学院 医学系研究科 教授 玉田 耕治
成人T細胞性白血病/リンパ腫に対するTax特異的T細 饱受容 体遺伝子導入免疫細胞療法の開発	自治医科大学 医学部 教授 神田 善伸
GPC3発現手術不能進行・腹膜播種卵巣明細胞腺癌を対象としたヒト同種iPS 細胞由来GPC3-CAR再生自然キラーリンパ球(ILC/NK)の安全性、忍容性および薬物動態を検討する第Ⅰ相臨床試験	京都大学 iPS細胞研究所 増殖分化機構研究部門 准教授 金子 新
或人T細胞白血病/リンパ腫の治癒を目指したHTLV-1 ウイルス標的樹状細胞ワクチン療法の確立: 薬事承認 を目的とした第Ⅱ相医師主導治験	末廣 陽子
	岡山大学大学院 医歯薬学総合研究科 教授 藤原 俊義
LCR4を標的としたキメフ抗原受容体遺伝子改変「細 抱療法の非臨床試験	国立がん研究センター 研究所腫瘍免疫研究分野 主任研究員 渡遠 とか
百仁 ― 知 ツ 7 は炒 ワ オ リ, ょ か 田 \フー ムロ フ\ 6. ワ オ リ, ょ	東京大学 生産技術研究所 特任教授 甲斐 知惠子
CD19陽性悪性リンパ腫に対するpiggyBacトランスポ ゾン法によるキメラ抗原受容体遺伝子改変自己T細胞 の安全性及び有効性に関する第Ⅰ/Ⅱ相医師主導治験	小児科学 教授 高橋 義行
がん認識抗体とCAR-T細胞による難治性B細胞性悪性 リンパ腫を対象とした第I相医師主導臨床試験	山口大学大学院 医学系研究科 教授 玉田 耕治
CD116陽性急性骨髄性白血病および若年性骨髄単球 性白血病を対象とする非ウイルス遺伝子改変GMR CAR-T細胞のFIH医師主導治験	信州大学 学術研究院医学系 教授 中沢 洋三