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1) Analysis of the molecular basis regulating skeletal muscle regeneration

Single-cell RNA sequencing (scRNA-seq) analysis of ligand-receptor interactions between skeletal muscle cells and
macrophage was performed. We performed our analysis of sScRNA-seq data to analyze the function of macrophage subtypes
in detail, searching for plasma membrane proteins that could potentially be used for isolation by flow cytometry. Ligand-
receptor interaction analysis showed that macrophage subtypes in one cluster interacted most with skeletal muscle stem
cells compared to the other clusters. In particular, they showed close interactions with proliferating skeletal muscle stem
cells. Next, genes specifically expressed in macrophage subtypes were validated by differential expression analysis using
Seurat, and positive and negative markers were identified, respectively. The expression information of these markers
suggested that this macrophage subpopulation was a novel subtype belonging to neither the conventional inflammatory
(M1) nor anti-inflammatory (M2) macrophages. Gene expression analysis in the fractions sorted by flow cytometry
confirmed the enrichment of genes that displayed high expression in this macrophage subtype. These results established
conditions that allow the sorting of macrophage subpopulations critical for regulating skeletal muscle stem cell
proliferation. These results suggest that localization and ligand-receptor interactions between skeletal muscle cells and
macrophage subtypes play a vital role in skeletal muscle regeneration. In particular, the novel macrophage subtype is likely
to interact closely with proliferating skeletal muscle stem cells and promote skeletal muscle regeneration.

2) Creation of human skeletal muscle organoids

First, reporter iPS cells expressing fluorescent proteins under the control of skeletal muscle stem cell-specific gene
promoters were generated. We performed differentiation induction experiments using these cell lines with modifications to
the previously published skeletal muscle differentiation induction protocol. In the differentiation induction experiments, the
expression of fluorescent proteins was observed over time using a fluorescence microscope and flow cytometer. As a result,
fluorescent protein expression was observed from the 10th day of differentiation induction, respectively. The expression
intensity increased with the progress of differentiation induction and was detected in about 70% of cells on day 30 of
differentiation induction. It was observed that fluorescent protein expression started from the densely populated area of cells
and gradually changed to a fibrous morphology with a gradual expansion of the positive area. On the other hand, no
fluorescent protein expression was observed outside of the dense cell area. The cells expressing the reporter fluorescence
were isolated by flow cytometry and passaged to promote myofiber formation. The morphology of cells that did not express
the reporter fluorescence was observed to form a tube-like structure by fluorescence microscopy. These cells did not express
any myofiber markers and were found to be other cells derived from iPS cells.

3) Analysis of muscle tissue repair mechanisms using human skeletal muscle organoids

Human skeletal muscle organoids were constructed to create a model of CTX-induced myofiber damage. Human skeletal
muscle stem cells and human macrophages were mixed to create spheroids. Spheroids were embedded in Matrigel and
cultured in three-dimensional culture. After culture, CTX was added to the organoids to induce myofiber damage. After the
injury, immunostaining and fluorescence microscopy of the organoids were performed. The observations showed mature
skeletal muscle fibers formed in the organoids before injury induction. In addition, the addition of CTX caused damage to
the muscle fibers, and migration and proliferation of skeletal muscle stem cells and macrophages were observed.

These results suggest that it is possible to construct human skeletal muscle organoids from skeletal muscle cells and
macrophages induced from human iPS cells. The results also suggest that human skeletal muscle organoids may be able to
reproduce myofiber damage and regeneration in vivo. Using this human skeletal muscle organoid evaluation system, we
plan to analyze in detail the interaction between skeletal muscle cells and macrophages in skeletal muscle regeneration. This
study is expected to contribute to the elucidation of the molecular mechanism of impaired muscle regeneration for the

development of sarcopenia prevention and treatment methods.



