No. 28 ワクチン・治療薬シリーズ

saRNA ワクチン

自己増幅型 RNA(self-amplifying RNA; saRNA)またはレプリコン. mRNA の一種である saRNA は、1990 年代にがんワクチンへの応用が 試みられ、2000年代にはインフルエンザをはじめとする感染症ワクチンと しても検討された。 コロナ禍においては、 mRNA ワクチンのパイプラインの 一つとして複数の企業が開発に取り組んでいる。

1. saRNA ワクチン概要

(1) mRNA を増幅する酵素がコードされている

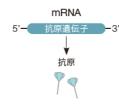
saRNA ワクチンは、COVID-19 ワクチンとして広く用いられているファ イザー社のコミナティ (開発コード BNT162b2) やモデルナ社のスパイクバッ クス (開発コード mRNA-1273) などの従来型 mRNA ワクチンとは異 なるモダリティである.

従来型は、**抗原遺伝子**のみをコードする配列が含まれているが、 saRNA ワクチンでは抗原遺伝子に加え、saRNA を細胞内で複製する 酵素(この場合, RNA 依存性 RNA ポリメラーゼ; RdRp) もコードさ れている。細胞内で翻訳された RdRp の働きによって、saRNA ワクチン の mRNA は自己増幅するのである (図 1).

saRNA ワクチンの設計には、自己増幅機構を担うテンプレートとして、 プラス一本鎖 RNA をゲノムにもつアルファウイルス属のウイルスが利用さ れる。主にベネズエラウマ脳炎ウイルス(VEEV)¹、シンドビスウイル ス (SINV)²、セムリキ森林ウイルス (SFV)³ などのゲノム構造が応 用されている。これらのウイルス由来のコンストラクト(遺伝子配列の設 計構成体) には、2 つのオープンリーディングフレーム (ORF: タンパク質

saRNA mRNA 抗原をコードする配列 脂質膜

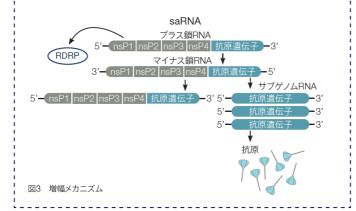
図 1 saRNA ワクチン(ト)と従来型 mRNA ワクチン(下)


に翻訳される可能性のある配列) が含まれており、上述のように 1 つは RdRp を、もう1つは抗原となる構造タンパク質をコードする。saRNA では、後者を任意の抗原配列に置き換えることで、標的病原体に対 する免疫応答を誘導できることが利点である(☞「saRNA の増幅メカ ニズム ().

- ¹ Venezuelan Equine Encephalitis Virus. 主に中南米や米国南部に分布するアルファ ウイルスで、ヒトおよび馬に脳炎を引き起こすことがある。 蚊を媒介として感染し、自 然界では齧歯類を宿主とする。 そのゲノム構造と自己複製機構が、 saRNA ワクチン のレプリカーゼ領域の設計に利用されている.
- ² Sindbis Virus, アフリカやアジアを中心に分布するアルファウイルスで, 蚊を媒介して 鳥類やヒトに感染する。ヒトでは関節痛や発疹を伴う熱性疾患を引き起こすことがあ るが、重症化は稀、実験系での遺伝子発現やワクチン設計におけるベクターとしても 用いられている.

saRNA の増幅メカニズム

従来型 mRNA (非増幅性 mRNA) の 一般的な構成要素は、キャップ、5'-UTR (Untranslated Region), 抗原コード領域, 3' -UTR, ポリAテールである. mRNAの 機能領域を図2に示す.



saRNAには、上記の構成要素に加えて 4 つの非構造タンパク質 (nsP1~4) をコー

図 2 非増幅性 mRNA

ドする領域が含まれる. これらが複合体を形成して RNA 依存性 RNA ポリメラーゼ (RdRp) として機能する複製酵素となる。この酵素活性に より、saRNA が細胞内で自己増幅される。

増幅プロセスでは、まず投与されたセンス(プラス)鎖 RNA が鋳型(テ ンプレート) となり、アンチセンス (マイナス) 鎖 RNA が合成される。次 に、このマイナス鎖 RNA がテンプレートとなって、元のゲノムと同じ全長の プラス鎖 RNA と標的抗原遺伝子をコードするサブゲノム RNA がそれぞれ 産生される。サブゲノム RNA には特異的なプロモーター配列(RdRp が 転写開始点として認識する配列)が含まれており、それが認識されるこ とで、抗原遺伝子が大量に転写・翻訳され、目的とする抗原タンパ ク質が細胞内で発現する。このように、saRNA は低用量でも高効率で 持続的に標的タンパク質を発現できる特性をもつ (図3).

³ Semliki Forest Virus。1942 年にウガンダのセムリキ森林で蚊から分離されたアルファ ウイルス、アフリカ中央部・東部・南部に分布し、自然宿主は主に霊長類、強力 な自己複製能を有するため、saRNA コンストラクトの基盤として頻繁に用いられている。

(2) saRNA ワクチンの特徴

従来型 mRNA ワクチンと比較して、saRNA ワクチンは次のような点 が特徴とされている.

少量の接種で十分な抗体が産生

saRNA ワクチンは、少ない投与量で従来の mRNA ワクチンと同等 レベルの抗原タンパク質が発現するとされる [1-5].

2018年,独・ビオンテックRNAファーマシューティカルズ社(BioNTech RNA Pharmaceuticals GmbH: 本社:マインツ) のアネット・フォーゲ ル (Annette B. Vogel) らは、80 μgの mRNA と同等レベルの防御 効果を 64 分の 1 に相当する 1.25 μ q の saRNA で達成したと報告した [1]. 少量の接種で十分な抗体が産生すれば、従来の mRNA ワクチン と比較して、副反応リスクの低減が期待できるとともに、原薬量あたり の接種回数が増え、より多くの人に接種機会を提供できるようになる。

免疫反応の持続性が高い

saRNA ワクチンは、RdRp により「増幅 | した saRNA が抗原を産 生するため、免疫反応の持続性が高まるとされる [3]. Meiji Seika ファ **ルマ**(本社:東京)のグル−プは、既承認の mRNA ワクチン 3 回接 種者(3回目はコミナティ接種)に対して、saRNA ワクチン候補である ARCT-154⁴ 追加接種群(420人)とコミナティ追加接種群(408人) を比較した 181 日経過した時点で ARCT-154 追加接種の方が高い 抗体力価を示したことを報告した[4]. ここで、ARCT-154 は 1 ショット 5 μ g で、コミナティの 30 μ g の 6 分の 1 であった.

⁴ 米・Arcturus Therapeutics 社(本社: カリフォルニア州)の基盤技術をベースに創 製された自己増幅型の mRNA ワクチン. Meiji Seika ファルマ社が日本で開発し、 2023年11月に製造販売承認を取得した。

2. saRNA ワクチン小史

(1) mRNA ワクチン黎明期

mRNA ワクチンの予感

1987 年末、米・ソーク研究所のロバート・マローン (Robert Malone) らは、リポソーム(薬剤や RNA を包んで細胞に運ぶ脂質膜 カプセル)で保護した mRNA を培養細胞に導入し、タンパク質を発現 させることに成功した。マローンらの画期的な実験は、後の mRNA ワク チンの実用化を予感させた[5].

コードしたタンパク質をマウス体内に発現

1990年, 動物における体外転写 (in vitro transcription; IVT) mRNA の有効性が初めて報告された。米・ウィスコンシン大のジョン・ ウルフ (John Wolff) らは、マウスの骨格筋に直接注入した mRNA と プラスミド DNA (pDNA) 5と呼ばれる環状 DNA からコードされたタン パク質の発現に成功したのである[6]。また、pDNAに比べ mRNAは 構造的に不安定であることも明らかになった。

⁵ 二本鎖環状 DNA、細胞核に入ってから mRNA に転写され、それが翻訳されてタン パク質になる。 mRNA と比較して発現には時間がかかるが、 構造的には安定で保存 性にも優れるという利点がある。

(2) mRNA ワクチンが迎えた「死の谷」

「生体内はおろか保管中ですら mRNA は不安定 | 「mRNA ワクチン など非現実的だ」「そもそも大規模に製造できるのか」――、その後の 核酸ワクチン開発は pDNA に向かった.

mRNA ワクチンによる防御免疫応答を実証

1993 年、仏・国立保健医療研究所 (INSERM) のフレデリック・ マルティノン (Frédéric Martinon) らは、mRNA の投与により、感染 性病原体に対する防御的な免疫応答を誘導できることを、マウスモデル で初めて実証した。 インフルエンザウイルスの抗原をコードした mRNA を リポソームに封入し、マウスの皮下に接種したところ、抗原特異的な細 胞障害性 T 細胞 (Cytotoxic T-Lymphocyte; CTL) が誘導された [7].

mRNA ワクチンの送達技術の必要性

このように、mRNA が抗原として作用し得ることは示されたものの、 RNA は極めて不安定であり、適切な送達手段がなければ体内で十 分な効果を発揮することはできない。実際、脂質ナノ粒子 (lipid nanoparticle; LNP) などの殻でくるまれていない裸の RNA ワクチンは、 生体中のリボヌクレアーゼなどの酵素によって急速に分解されてしまうた め、その効力が限定的である。 したがって、 mRNA ワクチンの有効成 分を標的細胞内に確実に送達するためには、リポソームやカチオン性ポ リマーなどの合成送達媒体を使用した製剤化が不可欠とされている.

マルティノンらも、 脂質であるリポソームで mRNA を包んで細胞内に 送達し免疫応答を誘導した。しかし、当時のこの脂質送達システムは、 毒性や安定性の面で臨床応用には適さなかった。この問題が克服され、 現在の COVID-19 ワクチンを実現させた LNP 技術が見出されるまで、 実に 10 年もの期間を要した [7].

No. 28 ワクチン・治療薬シリーズ

saRNA ワクチン

pDNA ワクチンに注目が集まっていた時期も、mRNA ワクチンの基礎 研究は途絶えず続けられ、がん免疫療法などでは有望な成果が生ま れた. 一方で pDNA ワクチンは、小動物モデルでは広く有効だったが、 ヒト臨床試験では十分な効果が得られなかった。

その結果, pDNAよりも安全で強力な代替手段と見なされた mRNA ワクチンへの関心が再び高まった。とはいえ、後発のモダリティで ある mRNA ワクチンが、新規プラットフォーム技術として商業的な競争 力を持つためには、少量の RNA でウイルスベクターに匹敵する免疫誘 導効果を示す必要があった.

saRNA をワクチンに用いるという新概念を提案

前述の通り、細胞内で自己増幅する saRNA ワクチンは、少量接 種で十分な量の抗体が産生し、なおかつ抗体の持続が期待される。

1994年, この特性を初めて実証し, saRNA をワ クチンに用いるという新概念を提唱したのが, スウェー デン・カロリンスカ研究所のピーター・リルジェストロム (Peter Liljeström) らである. 同グループはセムリキ

森林ウイルス(SFV)レプリコンを用いた合成 saRNA ワクチンをマウスに 接種すると、インフルエンザウイルスの核タンパク質が体内で発現し、高 い抗体力価を伴う体液性免疫が誘導されることを報告した[8]。また、 同グループは saRNA ワクチンがインフルエンザ A ウイルス、RS ウイルス (Respiratory Syncytial Virus), ダニ媒介性脳炎ウイルスに対する防 御効果を発揮することをマウス実験で示した [9].

SFV 由来の saRNA から産生した小胞の伝播を確認

1994 年、米・イェール大のジョン・ローズ (John Rose)、メリッサ・ ロール (Melissa M. Rolls) らは、水疱性口内炎ウイルス (VSV) ⁶ の G タンパク質をコードした SFV 由来の saRNA を組織培養細胞全体に 導入し、発現した G タンパク質が細胞全体に広がる様子を確認した。 さらに、その培養上清中に認められた膜エンベロープ小胞を別の培養細 胞に添加したところ、saRNAが他の細胞に移行し、発現する様子が 観察されたと報告した [10].

⁶ Vesicular Stomatitis Virus. ラブドウイルス科に属するマイナス一本鎖 RNA ウイルスで、 主に家畜に水疱性疾患を引き起こす。研究用途では、強力な細胞侵入能を持つG タンパク質を利用し、遺伝子導入やワクチンベクターとして広く用いられている。

saRNA をがんワクチンに応用する

1990 年代には、がんワクチンとして saRNA ワクチンの可能性を示唆 する成果が報告されはじめた。1999年、米·国立がん研究所(NCI) のニコラス・レスティフォ (Nicholas Restifo) らは、マウス実験により、 saRNA ががんワクチンに応用可能であると提案した [11, 12].

また、米・デューク大のグループは、改変型のがん胎児性抗原 (Carcinoembryonic Antigen; CEA) 遺伝子を発現するアルファウイル ス由来のレプリコンワクチン「AVX701」を用い、転移性結腸直腸がん 患者を対象として, 2013年に P1 試験を開始した。 また, 2015年に は大規模な P1 拡大試験を行った(2019 年に終了) [13].

さらに 2020 年、同大学のグループは、ステージ III と IV のがん患者 に対して CEA をコードしたレプリコンワクチン「VRP-CEA」の P1 試験を 実施しており、免疫調節の面で良好な結果を得たと報告した[12].

saRNA ワクチンを非ウイルス送達

2012 年, スイス・ノバルティス社 (Novartis; 本社: バーゼル) のグルー プは、siRNA⁷の全身送達に用いられていた LNP 技術を採り入れ、LNP でカプセル化した 9kb の saRNA を非ウイルス性の送達粒子としてマウス 体内に送達することに成功した。これにより、ワクチンとしての製造、保管、 輸送の各面でウイルスベクターを用いる方式に比べて実用性が高まった。 また、生体内での saRNA 複製期間が延びたこと、低用量接種でも RS ウイルスに対する保護的免疫応答を誘発することが示された[14].

⁷ small interfering RNA. 標的とする遺伝子の発現を選択的に抑制するための短鎖二本 鎖干渉 RNA、遺伝子機能解析、がん・ウイルス疾患の治療薬などに用いられる。

(4) 感染症に saRNA ワクチンを適用

2000年代に入り、インフルエンザをはじめ、様々な感染症に対して saRNA をワクチンとして適用しようとする取り組みが始まった。

LNP-saRNA ワクチンで H5N1 ウイルスから鳥を防御

2000年、米・農務省南東部家禽研究所(SEPRL)のグループは、 ヒト香港インフルエンザ A 分離株 (A/HK/156/97) 由来のヘマグルチ ニン(HA)を発現するベネズエラウマ脳炎ウイルス(VEEV)由来のウ イルスレプリコン粒子(VRP)を用いて、強力な免疫応答を鳥類に誘 発し、H5N1 亜型ウイルスからの防御に成功したと報告した[15].

2013 年、ノバルティス社のグループは、H7N9 亜型に対する LNPsaRNA ワクチンを感染株の配列情報取得からわずか 8 日間で製造し たことを報告した [16]。 同年, 米・ハリスワクチン社 (Harrisvaccines ™ ☞「アイオワ州大発のハリスワクチン社」)は、A型インフルエンザウイル ス (influenza A virus, IAV) のヘマグルチニン (HA) と核タンパク質 (NP) 遺伝子 ®を発現する VRP ワクチンを構築、豚への接種により、H1N1 pdm2009 感染時の感染性ウイルス粒子の排出量低減や肺病変の減 少が認められた [17].

⁸インフルエンザウイルスのヌクレオプロテイン(nucleoprotein)をコードする遺伝子。 RNA 複製に不可欠な構造タンパク質を産生する。 保存性が高く、T 細胞応答を誘 導する抗原としてワクチンにも応用される.

ブタ流行性下痢ウイルスワクチン

ブタ流行性下痢ウイルス (Porcine Epidemic Diarrhea Virus; PEDV) は、2013年3月17日に米国で初めて確認され、半年間で 急速に感染が拡大した。以降,2014年6月までに全米30州で延 べ 29,970 件の発生が報告されている [18].

2013 年 8 月、ハリスワクチン計は、PEDV 用ワクチン「iPED」を開 発し、条件付きで認可された。同年 12 月には 77 万回分の新ワクチ ンを出荷した [1, 19-21].

3. saRNA ワクチンの研究・開発

(1) 最近の saRNA ワクチン研究

2 成分にしてダウンサイジング

トランス増幅 RNA(taRNA) ベクターシステム

RdRp 複合体をコードする配列と標的遺伝子をコードする配列を独立 させることでダウンサイジングする――、RNA 配列の長さと安定性は負

アイオワ州大発のハリスワクチン社

ハンク・ハリス (写真上) は、2006年にアイオワ州 大ラボからスピンアウトする形でハリスワクチン社 (Harrisvaccines Inc, 旧称 Sirrah Bios) を設立し、米・アル ファバックス社 (Alphavax; 本社: ノースカロライナ州) か らmRNA ウイルスレプリコン粒子ワクチン技術のライセンス

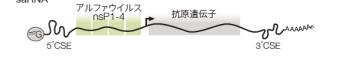
を取得した。なお、アルファバックス社は、2003~2010年、様々な感 染症やがんに対する saRNA ワクチン候補を試験したが最終的に「ビジ ネス上の理由」で事業を終了している.

その後、ハリスワクチン社は、豚や家禽の様々な病気に対する米・ 農務省(USDA)のライセンスを取得し、実用化を進めた、その中で、 PEDV に対する saRNA ワクチン「iPED+」(「iPED」を改良) は、米 国で認可され、実際に200万回以上が豚に処方され

た. この技術は、2015年に米・メルクアニマルヘルス 社 (Merck Animal Health; 本社: ニュージャージー州) に買収された.

2021年には、ハンク・ハリスは息子のジョエル・ハ リス (写真下) とともにジェンバックステクノロジーズ社 を創設した。同社は自社開発の saRNA +ナノ粒子 startsomething.cals. プラットフォームを用い、家畜・家禽向け RNA ワクチ hank-harris21 ンの研究・開発を行っている.

に相関し、配列が長くなるほど不安定になるとされる。このため、構造 上長大になりやすい saRNA は、保存や輸送には不向きとなる。


2019 年, 独・ヨハネスグーテンベルク大マインツ医療センター (TRON) のティム・ベイゼルト (Tim Beissert) らはトランス増幅 RNA (taRNA) を用いた2成分型の新規 mRNA 増幅ベクターシステムを設計した(図 4) [22]. 短縮された mRNA フラグメントが互いに補完し合うことで自 己増幅機能を再構成する仕組みとなっており、構成要素ごとに長さや 修飾条件を最適化できる。よって、従来の saRNA ワクチンと比較して、 安全性・生産性・最適化の面で重要な利点が期待される.

脂質ナノ粒子(LNP)で saRNA ワクチン送達

2019 年, 英・グラクソ・スミスクライン社 (GSK plc; 本社: ロンド ン) のマーセロ・ザムサ (Marcelo Samsa) らは、VEEV の弱毒生ワ クチン株 TC-83 をベースに、合成カチオン性ナノエマルジョン(Cationic Nanoemulsion: CNE) ° でカプセル化した saRNA ワクチン候補 2 種を 設計した. 弱毒化生ワクチンである LAV-CNE は、TC-83 由来の完全 な RNA ゲノムを運搬する構成であり、自然感染に近い形での免疫誘 導が期待される。一方、不活化アルファウイルスベクター IAV-CNE は、 カプシド遺伝子が欠失した TC-83 ウイルスゲノムを運搬することで構造タ ンパク質が形成されないため、より安全な免疫応答が期待される.

これらのワクチンを接種したマウスで野生型 VEEV エアロゾルチャレンジ 試験では、両ワクチンともに強力なウイルス特異的中和抗体を誘導した ことが確認された [23].

9 脂質を主体としたナノサイズの液滴で構成される乳化液製剤、RNA 分子と電気的に 結合しやすく、細胞膜との融合も促進するため、脂質ナノ粒子(LNP)に代わる送 達システムとして利用されている.

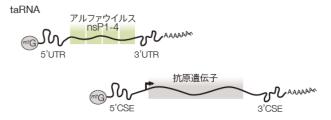


図4 saRNAとtaRNA

No. 28 ワクチン・治療薬シリーズ

saRNA ワクチン

英・インペリアルカレッジロンドンのロビン・シャトック(Robin Shattock; 写真上)、カトリーナ・ポロック(Katrina Pollock; 写真下)らは COVID-19 に対する低用量ワクチンとして saRNA ワクチン候補 LNP-nCoVsaRNA を開発した。アルファウイルス由来のレプリカーゼ領域を基にした saRNA を採用し、SARS-CoV-2 のスパイクタンパク質(S タンパク質)をコードする配列と組み合わせて構成されている。

2021 年に報告された臨床試験結果では、 $5.0~\mu~g$ および $10.0~\mu~g$ の用量でワクチンを接種した $23~\Lambda$ の参加者のうち、 $20~\Lambda$ に免疫応答が確認された [24]。この研究は saRNA ワクチンをヒトに臨床応用した初期事例の一つであり、その後の saRNA 技術の臨床応用における先駆けと位置づけられている。

(2) 開発中の主な saRNA ワクチン

表 1 に示すように、様々な製薬会社や研究機関で saRNA ワクチン

の研究開発が進められている.

ARCT-154 は、日本では Meiji Seika ファルマ社が開発し、2023年 11 月に製造販売承認を取得した(製品名:コスタイベ®筋注用). EU 域内では、Seqirus Netherlands B.V.(本社:アムステルダム;製造・販売を担う CSL グループの欧州拠点)が2025年2月に製造販売承認を取得した(製品名: Kostaive®).

VLPT ジャパン社 (本社:東京) は SARS-CoV-2 S タンパク受容体結合ドメイン (Receptor Binding Domain: RBD) を細胞膜上に発現させるレプリコンワクチン「**VLPCOV-04**」を設計・開発中である。同社は 2023 年 12 月、オミクロン株 XBB.1.5 系統対応する 1 価ワクチン「VLPCOV-04」の国内 P3 試験を開始した [25-27]。また,2025年3月にはオミクロン株 JN.1 系統対応する 1 価ワクチン「**VLPCOV-05**」を用いた P3 のプラセボ対照・無作為化試験を実施している [28]。

英・インペリアルカレッジロンドンとカナダ・アクイタス・セラピューティック社(Acuitas Therapeutics; 本社:バンクーバー)が開発した LNP-nCoVsaRNA は、SARS-CoV-2 の全長 S タンパク質と VEEV ゲノム由来の RNA 複製タンパク質をコードしている。2020 年 8 月から、英国国

内にて 216 人の健康な被験者を対象に、P2a 試験(拡大安全性および免疫原性試験)を英国内で実施した(~2021年7月30日)[29].

2022 年 6 月, HDT バイオ社(本社:米・シアトル)が開発した HDT-301 が、インドで緊急使用承認(Emergency Use Authorization; EUA)を取得した。SARS-CoV-2 のスパイクタンパク質遺伝子をコードした mRNA を脂質無機ナノ粒子(LION ™)[30] に内包したもので、saRNA として初の実用化例となった [31].

4. 将来に向けて

現在、saRNA ワクチン技術プラットフォームは、インフルエンザ、RS ウイルス、狂犬病、エボラ出血熱、HIV-1 などの感染性ウイルスに加え、黒色腫などのがんを対象としたワクチン開発にも応用されており、広範な臨床研究が進行中で、有望な成果が生まれつつある。

今後の実用化に向けて、その過程で生まれる新たな科学的知見や 技術的課題にも注意を払い、科学と技術が共に進化するような持続 的な研究開発体制の推進が望まれる.

••• References

- [1] Vogel, A.B. et al., Mol Ther, 26, 2, pp. 446-455, 2018
- [2] 大岡伸通,井上貴雄, 薬剤学, 82, 2, pp. 71-78, 2022
- [3] 位髙啓史, 医薬品医療機器レギュラトリーサイエンス, 54, 4, pp. 279-285, 2023
- [4] Oda, Y. et al., The Lancet Infectious Diseases, 24, 4, pp. 341-343, 2024
- [5] Malone, R.W. et al., Proceedings of the National Academy of Sciences, 86, 16, pp. 6077-6081, 1989

- [6] Wolff, J.A. et al., Science, 247, 4949 Pt 1, pp. 1465-1468, 1990
- [7] Martinon, F. et al., Eur J Immunol, 23, 7, pp. 1719-1722, 1993
- [8] Zhou, X. et al., Vaccine, 12, 16, pp. 1510-1514, 1994
- [9] Fleeton, M.N. et al., J Infect Dis, 183, 9, pp. 1395-1398, 2001
- [10] Rolls, M.M. et al., Cell, 79, 3, pp. 497-506, 1994
- [11] Ying, H. et al., Nat Med, 5, 7, pp. 823-827, 1999
- [12] Crosby, E.J. et al., J Immunother Cancer, 8, 2, 2020
- [13] Morse, M.A. et al., J Clin Invest, 120, 9, pp. 3234-3241, 2010
- [14] Geall, A.J. et al., Proc Natl Acad Sci U S A, 109, 36, pp. 14604-14609, 2012
- [15] Schultz-Cherry, S. et al., Virology, 278, 1, pp. 55-59, 2000
- [16] Hekele, A. et al., Emerg Microbes Infect, 2, 8, p. e52, 2013
- [17] Vander Veen, R.L. et al., Vet Rec, 173, 14, p. 344, 2013
- [18] Connor, J.F., Proc Jpn Pig Vet Soc. (Japan), 65, pp. 13-20, 2015
- [19] Vander Veen, R. et al., PLoS Curr, 1, p. Rrn1123, 2009
- [20] Vander Veen, R.L. et al., Vaccine, 30, 11, pp. 1944-1950, 2012
- [21] Mogler, M. et al., Ann Proc Am Assoc Swine Veterinarians, pp. 63-64. 2014
- [22] Beissert, T. et al., Mol Ther, 28, 1, pp. 119-128, 2020
- [23] Samsa, M.M. et al., Mol Ther, 27, 4, pp. 850-865, 2019
- [24] Pollock, K.M. et al., EClinicalMedicine, 44, 2022
- [25] Akahata, W. et al., Cell Rep Med, 4, 8, p. 101134, 2023
- [26] Komori, M. et al., Nat Commun, 14, 1, p. 2810, 2023
- [27] Aboshi, M. et al., iScience, 27, 2, p. 108964, 2024
- [28] 臨床研究等提出・公開システム, https://jrct.mhlw.go.jp/latest-detail/jRCT2031240751
- [29] Szubert, A.J. et al., EClinicalMedicine, 56, p. 101823, 2023
- [30] Tregoning, J.S., Molecular Therapy, 31, 9, p. 2557, 2023
- [31] Saraf, A. et al., Nature Medicine, 30, 5, pp. 1363-1372, 2024

表 1 主な sa-RNA_COVID-19 ワクチン

国立医薬品衛生研究所遺伝子医薬部 HP(https://www.nihs.go.jp/mtgt/pdf/section3-2.pdf) から

開発企業 / 共同開発企業 (機関)	開発コード	mRNA コードタンパク質	開発段階
Meiji Seika Pharma/ Arcturus Therapeutics/ CSL Segirus	ARCT-154	SARS-CoV-2 スパイクタンパク質 (D614G変異を有するB.1株)	承認
		SARS-CoV-2 スパイクタンパク質 (Omicron JN.1株)	一変承認
	ARCT-2301	SARS-CoV-2 スパイクタンパク質 (起源株 + Omicron BA.4/5 株)	P3
	ARCT-2303	SARS-CoV-2 スパイクタンパク質 (Omicron XBB.1.5株)	Р3
Arcturus Therapeutics/ CSL Segirus	ARCT-021	SARS-CoV-2 スパイクタンパク質 (起源株)	P3
	ARCT-165	SARS-CoV-2 スパイクタンパク質 (Beta株)	P2
Imperial College London	LNP-nCoV saRNA	SARS-CoV-2 スパイクタンパク質	P1
GlaxoSmithKline (GSK)	CoV2 SAM (GSK4184258A)	SARS-CoV-2 スパイクタンパク質	P1
HDT Bio/SENAI CIMATEC	HDT-301/ repRNA-CoV2S	SARS-CoV-2 スパイクタンパク質	P2/3
MRC/UVRI & LSHTM Uganda Research Unit	LNP-nCoV saRNA-02	SARS-CoV-2 スパイクタンパク質	P1
VLP Therapeutics	VLPCOV-04	SARS-CoV-2 スパイクタンパク質 (RBD) (Omicron XBB.1.5 株)	Р3
	VLPCOV-05	SARS-CoV-2 スパイクタンパク質 (Omicron JN.1 株)	P3
Gritstone bio	GRT-R910	SARS-CoV-2 タンパク質 / 全長スパイクおよび選択保存された 非スパイク T 細胞エピトープ(TCE)	P2

承認:日・米・欧のいずれかで承認されたもの