課題管理番号: 24rea522003h0003 作成/更新日: 令和7年6月23日

日本医療研究開発機構 予防・健康づくりの社会実装に向けた研究開発基盤整備事業 ヘルスケア社会実装基盤整備事業 事後評価報告書

I 基本情報

研究開発課題名: (日本語) 慢性腎臓病の発症・進展に関するヘルスケアサービスやデジタル技術介入の 提言に資するエビデンスの構築

(英 語) Building evidence to contribute to recommendations for health care services and digital technology interventions related to the onset and progression of chronic kidney disease.

研究開発実施期間:令和4年9月26日~令和7年3月31日

研究開発代表者 氏名:(日本語) 猪阪 善隆

(英 語) Yoshitaka Isaka

研究開発代表者 所属機関・部署・役職:

(日本語) 国立大学法人大阪大学・腎臓内科学・教授

(英語) Professor, Department of Nephrology, The University of Osaka

II 研究開発の概要

慢性腎臓病(CKD)は加齢や生活習慣と深く関わり、糖尿病や高血圧症、肥満、脂質異常症、高尿酸血症などが 危険因子となっている。CKD は末期腎不全による透析のリスク因子となるだけでなく、心血管病のリスク因子でもある。 2018 年、腎疾患対策の更なる推進を目指して、腎疾患対策検討会報告書が出されている。達成すべき成果目標と して、2028 年度までに年間新規透析導入患者数を 35000 人以下に減少させるという、透析患者数減少の具体的な 指標が出されている(https://www.mhlw.go.jp/content/10901000/000332759.pdf)。新規透析導入患者を減少させる ためには、糖尿病患者や高血圧患者の慢性腎臓病(CKD)発症予防とともに、合併症としての CKD 進展抑制が重要 である。糖尿病や高血圧症の治療満足度・薬剤貢献度が高いにも関わらず、その合併症である糖尿病関連腎臓病 や腎硬化症の発症ならびにその進展による透析導入患者が減少しない要因として、糖尿病や高血圧症では薬物療 法以外に食事療法や運動療法など、患者自身の自主的な取り組みなしには成功しないことが挙げられる。Look AHEAD 研究では 2 型糖尿病の過体重/肥満患者において、減量を中心とした強化ライフスタイル介入は心血管疾 患イベントの発生を減少させなかったが、その要因の一つとして、食事療法や運動療法が長続きせず、リバウンド現 象がみられたことが挙げられている(N Engl J Med. 2013; 369: 145-54.)。食事療法や運動療法の継続のために、糖 尿病患者や高血圧患者に対するウェアラブルデバイスやスマートフォンなど ICT・ IoT を利用したデジタル治療が有 効なツールとなることが報告されているが、CKD 治療においても、ICT・ IoT を利用した治療が CKD 患者の自己管 理アウトカムを改善させることが報告されている(J Med Syst. 2017 Sep 18;41(11):170.)。

そこで、非CKD 患者のCKD 発症予防、あるいはCKD 合併患者のCKD 進展予防というアウトカム改善が期待できる非薬物療法として、『(ヘルスケアサービスやデジタルアプリによる)食事療法という臨床課題に対して、適切な食塩摂取はCKD 発症を抑制するか』など、身体活動や運動、喫煙やアルコール、睡眠などのライフスタイル、食事療法(塩分、カリウム、野菜や果物、たんぱく質、管理栄養士の監修のもと行う栄養管理)、体重管理という非薬物療法に関す healthcare question (HQ)を選定したうえで、各HQに対してパネル委員やシステマティックレビュー委員を選定した。さらに、これらのHQに対してシステマティックレビューを行った。システマティックレビューで解析したエビデンスを総括し、益と害のバランスも考慮し、Mindsの推奨に従った指針を作成した。

具体的には、(ヘルスケアサービスやデジタルアプリによる)食事療法(食塩摂取、カリウム摂取、野菜や果物摂取、たんぱく質摂取、適切な栄養管理)、運動療法体重コントロール、血圧コントロール、およびライフスタイル改善(禁煙、睡眠、アルコール摂取)についてエビデンスを解析した。しかしながら、慢性腎臓病の発症・進展に関する非薬物療法としての生活習慣の改善に関するエビデンス自体も十分に検証されてこなかったことに加え、ヘルスケアサービスやデジタルアプリなどを利用した慢性腎臓病の発症・進展に関するエビデンスもまだまだ不足している。そこでサービスの提供者や利用者の指針となるように、まず慢性腎臓病の発症・進展に関する食事療法や運動療法などの生活習慣についてのエビデンスを解析したうえで、可能な範囲でヘルスケアサービスやデジタルアプリなどを利用した場合のエビデンスを解析するという2段階の指針を作成した。ヘルスケアサービスやデジタルアプリを利用した場合のエビデンスが不十分な場合には、Future Research Question (FRQ)として今後の研究デザインなどの方向性について参考となるような記載を心掛けた。一般市民、保険者、企業、自治体等のサービスの利用者やサービスを提供する事業者が慢性腎臓病について理解が進むように、指針では第1章に慢性腎臓病に関する理解を深めるための解説を記載した。

指針には、下記のような HQ および FRQ について記載した。

HQ1-1-1: 適切な栄養管理を管理栄養士(を含むチーム医療)のもとで行うことは CKD 進展を抑制するか? FRQ1-1-2: ヘルスケアサービスやデジタルアプリによる適切な栄養管理を管理栄養士(を含むチーム医療)のもと 行うことは CKD 進展を抑制するか?

HQ1-2-1: 適切な食塩摂取は CKD 発症を抑制するか? HQ1-2-2: 適切な食塩摂取は CKD 進展を抑制するか?

FRQ1-2-3: ヘルスケアサービスやデジタルアプリによる適切な食塩摂取は CKD 発症、および進展を抑制するか?

HQ1-3-1: 適切なたんぱく質摂取は CKD 進展を抑制するか?

FRQ1-3-2: ヘルスケアサービスやデジタルアプリによる適切なたんぱく質摂取は CKD 進展を抑制するか?

HQ1-4-1: 適切なカリウム摂取は CKD 発症・進展を抑制するか?

FRQ1-4-2: ヘルスケアサービスやデジタルアプリによる適切なカリウム摂取は CKD 発症・進展を抑制するか?

HQ1-5-1: 適切な野菜や果物摂取は CKD 発症を抑制するか?

HQ1-5-2: 適切な野菜や果物摂取は CKD 進展を抑制するか?

FRQ1-5-3: ヘルスケアサービスやデジタルアプリによる適切な野菜や果物摂取は CKD 発症・進展を抑制するか?

HQ2-1: 適切な運動は CKD 発症を抑制するか?

FRQ2-2: ヘルスケアサービスやデジタルアプリによる適切な運動は CKD 発症を抑制するか?

HQ2-4 ヘルスケアサービスやデジタルアプリによる適切な運動は CKD 進展を抑制するか?

HQ&FRQ3-1: 肥満もしくは過体重の患者に行う食事または運動による減量介入は CKD の発症抑制のために推奨されるか?

HQ&FRQ3-2: 肥満もしくは過体重のある CKD 患者に行う食事または運動による減量介入は CKD 進展を抑制のために推奨されるか?

FRQ3-3: デジタルヘルスを用いた体重への介入は CKD の発症/進展を抑制するか?

HQ4-1: 適切な血圧コントロールは CKD 発症を抑制するか?

HQ4-2: 適切な血圧コントロールは CKD 進展を抑制するか?

service.amed.go.jp/)、日本腎臟学会

FRQ4-3: ヘルスケアサービスやデジタルアプリによる適切な血圧コントロールは CKD 発症・進展を抑制するか?

HQ&FRQ5-1: (ヘルスケアサービスやデジタルアプリによる)禁煙は CKD 発症・進展を抑制するか?

HQ&FRQ5-2:(ヘルスケアサービスやデジタルアプリによる)適切な睡眠は CKD 発症・進展を抑制するか?

HQ&FRQ5-3: (ヘルスケアサービスやデジタルアプリによる) 適切な飲酒は CKD 発症・進展を抑制するか?

上記指針は、日本医療開発機構 E-LIFE ヘルスケアナビに掲載するとともに(https://healthcare-

(https://jsn.or.jp/medic/data/b32e95623b8522e32e030e0b4ea594e6f2f6e157.pdf)および日本医療情報学会 (https://www.jami.jp/wp-content/uploads/2025/06/healthcare-service-guideline_CKD.pdf)の HP に掲載した。

しかし、上記指針は一般の方には専門的すぎるというご意見もあったことから、一般市民、保険者、企業、自治体等のサービスの利用者やサービスを提供する事業者が上記指針を理解し、活用することを目的として、非医療者を対象とした「積極的に予防する! CKD 発症・進展予防のためのマネージメントガイドブック」を作成した。このガイドブックには引用文献を記載しなかったが、文献番号は指針ものと同じものとし、詳細を確認したい場合は、指針を参照できるように工夫した。さらに、「積極的に予防する! CKD発症・進展予防のためのマネージメントガイドブック」の内容を一般市民の方にも深く浸透できるように、ポッドキャスト風にアレンジした音声データも作成した

(https://drive.google.com/file/d/1km2H4yyMIa19HNJQ1xv6zthkxVLisEyU/view?usp=sharing)

ヘルスケアサービスやデジタルアプリなどは医療の分野において急速に普及してきている。このようなサービスを利用することにより、一般市民が慢性腎臓病の発症を予防したり、慢性腎臓病患者が腎障害の進展を抑制したりできるのではないかと期待が寄せられている。このような目的を達成するために、ヘルスケアサービスやデジタルアプリなどを利用する一般市民、保険者、企業、自治体等がエビデンスに基づいたサービスを利用することができるようにするとともに、これらのサービスを提供する事業もエビデンスに基づいてサービスの質を高めることが重要である。本指針は、サービス利用者が適切にヘルスケアサービスやデジタルアプリなどを選択するために必要な専門的・科学的な情報を整理するとともに、サービス提供者においてもヘルスケアサービスやデジタルアプリなどのエビデンスを構築するための評価指標や研究デザインを確認することできる。

Chronic kidney disease (CKD) is closely associated with aging and lifestyle factors, with risk factors including diabetes, hypertension, obesity, dyslipidemia, and hyperuricemia. CKD not only serves as a risk factor for endstage kidney diseases requiring dialysis but also as a risk factor for cardiovascular disease. In 2018, a report by the Kidney Disease Countermeasure Review Committee was published with the aim of further advancing kidney disease countermeasures. As a specific target for reducing the number of dialysis patients, the report sets a goal of reducing the annual number of new dialysis patients to 35,000 or fewer by the fiscal year 2028 (https://www.mhlw.go.jp/content/10901000/000332759.pdf). To reduce the number of new dialysis patients, it is important to prevent the onset of chronic kidney disease (CKD) in patients with diabetes and hypertension, as well as to suppress the progression of CKD as a complication. Despite high treatment satisfaction and medication effectiveness for diabetes and hypertension, the number of patients requiring dialysis due to the onset or progression of diabetic kidney disease or nephrosclerosis—complications of these conditions—has not decreased. This is because, in addition to medication therapy, dietary therapy and exercise therapy are essential, and these require patients' active participation to be successful. In the Look AHEAD study, intensive lifestyle interventions focused on weight loss in overweight/obese patients with type 2 diabetes did not reduce the incidence of cardiovascular events, but this was partly attributed to the inability to sustain dietary and exercise therapy, leading to rebound phenomena (N Engl J Med. 2013; 369: 145-54). Digital therapies utilizing ICT and IoT, such as wearable devices and smartphones, have been reported to be effective tools for maintaining dietary therapy and exercise therapy in patients with diabetes and hypertension. Similarly, in CKD treatment, ICT and IoT-based therapies have been reported to improve self-management outcomes in CKD patients (J Med Syst. 2017 Sep 18;41(11):170.).

Therefore, as a non-pharmacological therapy expected to improve outcomes such as preventing CKD onset in non-CKD patients or preventing CKD progression in patients with CKD, we selected healthcare questions (HQs) related to lifestyle factors (physical activity, exercise, smoking, alcohol consumption, sleep) and dietary therapy (salt intake, potassium intake, vegetables, fruits, protein, and nutrition management supervised by a registered dietitian), and weight management, we selected healthcare questions (HQs) related to non-pharmacological therapies. We then selected panel members and systematic review members for each HQ and conducted systematic reviews for these HQs. The evidence analyzed through systematic reviews was summarized, and guidelines were developed in accordance with Minds' recommendations, taking into account the balance of benefits and harms.

The guidelines analyzed evidence on dietary therapy (salt intake, potassium intake, vegetable and fruit intake, protein intake, and appropriate nutritional management), exercise therapy for weight control, blood pressure control, and lifestyle improvements (smoking cessation, sleep, and alcohol intake) provided through healthcare services or digital apps. However, the evidence itself regarding lifestyle improvements as non-pharmacological therapies for the onset and progression of chronic kidney disease has not been sufficiently verified, and there is still insufficient evidence regarding the use of healthcare services and digital apps for the onset and progression of chronic kidney disease. Therefore, in order to provide guidelines for service providers and users, we first analyzed the limited evidence available on lifestyle interventions such as dietary therapy and exercise therapy for the onset and progression of CKD, and then analyzed the evidence available on the use of healthcare services and digital apps, where possible, to create a two-step guideline. In cases where evidence on the use of healthcare services and digital apps is insufficient, we have included Future Research Questions (FRQs) to provide guidance on future research designs. Additionally, the guidelines include a simplified version in Chapter 1 to help the general public, insurers, companies, local governments, and other service users and providers better understand chronic kidney disease.

Specifically, the following HQs and FRQs are included:

- HQ1-1-1: Does appropriate nutritional management under the supervision of a registered dietitian (or a multidisciplinary team) suppress the progression of CKD?
- FRQ1-1-2: Does appropriate nutritional management through healthcare services or digital apps under the supervision of a registered dietitian (or a multidisciplinary team) suppress the progression of CKD?
 - HQ1-2-1: Does appropriate salt intake suppress the onset of CKD?
 - HQ1-2-2: Does appropriate sodium intake suppress the progression of CKD?
- FRQ1-2-3: Does appropriate sodium intake through healthcare services or digital apps suppress the onset and progression of CKD?
 - HQ1-3-1: Does appropriate protein intake suppress the progression of CKD?
- FRQ1-3-2: Does appropriate protein intake through healthcare services or digital apps prevent CKD progression?
 - HQ1-4-1: Does appropriate potassium intake prevent CKD onset and progression?
- FRQ1-4-2: Does appropriate potassium intake through healthcare services or digital apps prevent CKD onset and progression?
 - HQ1-5-1: Does appropriate vegetable and fruit intake suppress the onset of CKD?
 - HQ1-5-2: Does appropriate vegetable and fruit intake suppress the progression of CKD?
- FRQ1-5-3: Does appropriate vegetable and fruit intake through healthcare services or digital apps suppress the onset or progression of CKD?
 - HQ2-1: Does appropriate exercise suppress the onset of CKD?
 - FRQ2-2: Does appropriate exercise through healthcare services or digital apps prevent the onset of CKD?
 - HQ2-4: Does appropriate exercise through healthcare services or digital apps slow the progression of CKD?
- HQ&FRQ3-1: Are dietary or exercise-based weight loss interventions recommended for patients with obesity or overweight to prevent the onset of CKD?
- HQ&FRQ3-2: Are dietary or exercise-based weight loss interventions recommended for CKD patients who are obese or overweight to prevent CKD progression?
 - FRQ3-3: Do digital health interventions targeting weight affect the onset or progression of CKD?
 - HQ4-1: Does appropriate blood pressure control prevent the onset of CKD?
 - HQ4-2: Does appropriate blood pressure control prevent CKD progression?
- FRQ4-3: Does appropriate blood pressure control through healthcare services or digital apps prevent CKD onset or progression?
- HQ&FRQ5-1: Does smoking cessation through healthcare services or digital apps prevent CKD onset or progression?
- HQ&FRQ5-2: Does appropriate sleep (through healthcare services or digital apps) prevent the onset or progression of CKD?
- HQ&FRQ5-3: Does appropriate alcohol consumption (through healthcare services or digital apps) prevent the onset or progression of CKD?

The above guidelines have been published on the Japan Agency for Medical Research and Development (JAMSTEC) E-LIFE Healthcare Navigator website (https://healthcare-service.amed.go.jp/), the Japanese Society of Nephrology (https://jsn.or.jp/medic/data/b32e95623b8522e32e030e0b4ea594e6f2f6e157.pdf)and the Japanese Society for Medical Information (https://www.jami.jp/wp-content/uploads/2025/06/healthcare-service-guideline_CKD.pdf).

However, some feedback indicated that the above guidelines were too technical for the general public. Therefore,

to help general citizens, insurance providers, businesses, local governments, and other service users and providers understand and utilize the guidelines, we created a simplified version titled "Actively Prevent CKD! Management Guidebook for Preventing the Onset and Progression of CKD." The simplified version does not include references, but the literature numbers are the same as those in the guidelines, and we have made it possible to refer to the guidelines for further details. Additionally, to help the general public better understand the content of the "Actively Prevent! Management Guidebook for Preventing the Onset and Progression of CKD," we have created an audio version in a podcast-style format

(https://drive.google.com/file/d/1km2H4yyMIa19HNJQ1xv6zthkxVLisEyU/view?usp=sharing).

Healthcare services and digital apps are rapidly becoming widespread in the medical field. It is hoped that these services will enable the general public to prevent the onset of chronic kidney disease and help patients with chronic kidney disease slow the progression of kidney damage. To achieve these objectives, it is important to ensure that general citizens, insurers, companies, local governments, and other stakeholders can access healthcare services and digital apps based on evidence, and that service providers improve the quality of their services based on evidence. This guideline aims to organize the specialized and scientific information necessary for service users to appropriately select healthcare services and digital apps, and to provide service providers with evaluation metrics and research designs for building evidence for healthcare services and digital apps.