革新的先端研究開発支援事業ユニットタイプ

「健康・医療の向上に向けた早期ライフステージにおける生命現象の解明」

研究開発領域

令和元年度採択 研究開発課題 事後評価結果

革新的先端研究開発支援事業 「健康・医療の向上に向けた早期ライフステージにおける生命現象の解明」 研究開発領域 課題評価委員会 ※本報告書内の所属・役職は研究開発期間終了時

I. 概要

- 1 研究開発タイプ及び研究開発領域の概要
- (1) 研究開発タイプ
- (2) 研究開発領域
- 2 評価の概要
- (1) 評価の実施時期
- (2) 評価委員一覧
- (3) 評価項目
- II. 課題別評価結果

令和元年度採択 研究開発課題

研究開発代表者名 (研究開発機関)

- ・有馬 隆博 (東北大学 大学院医学系研究科))
- ・上野 英樹 (京都大学 大学院医学研究科)
- · 岡部 繁男 (東京大学 大学院医学系研究科)
- ・後藤 由季子 (東京大学 大学院薬学系研究科)
- ·福井 宣規 (九州大学 生体防御医学研究所)

I. 概要

1. 研究開発タイプ及び研究開発領域の概要

(1)研究開発タイプ

ユニットタイプ (AMED-CREST)

画期的シーズの創出に向けて、国際的に高い水準の成果を目指すもので、研究開発代表者を 筆頭とするユニット(研究者集団)で研究開発を推進する。

(2)研究開発領域

本研究開発領域は、早期ライフステージ(受精~若年成人期)を対象として、環境要因が生体に与える影響の統合的な理解を進め、健康・医療の向上に向けた生命現象の解明を目指します。

近年、妊婦の低栄養と出生体重減少、発達障害などの脳機能障害、栄養不足/過多に起因する若年成人期の痩せや肥満、アレルギー等の免疫疾患、そして出生数や次世代の健康に影響するリプロダクティブへルスの課題など、早期ライフステージの健康・疾患には、生物学的要因に加え様々な環境要因が関与することが分かってきました。また、それらの要因がライフコース中後期(成人以降)の疾患リスクとなり得ること、さらに疾患リスクが次世代に継承される可能性があることを示唆する報告が相次いでおり、早期ライフステージに着目した研究は、ライフコースのあらゆる時期の生活の質(QOL)向上に寄与すると考えられます。しかしながら、対象の複雑さ、アプローチの難しさ、研究に一定の時間を要すること等の要因により、早期ライフステージにおける生体応答に関する研究はこれまで十分に行われてきませんでした。

一方、オミクスやイメージング技術の高度化、発生・代謝・免疫・神経等の各研究分野の進展は目覚ましく、また、国内外における各種モデル生物の基盤情報やヒト出生コホート情報・ 検体が体系的に収集されつつあり、早期ライフステージの生命現象の解明や早期ライフステージから次世代に至るまでの環境要因の影響を一気通貫に研究する基盤が整いつつあります。

本研究開発領域では、早期ライフステージの生命現象解明に向け、生物学や医学、農学、理工学、情報学など多様な分野の研究者が結集し、かつ相互に連携することで、早期ライフステージに関わる一連の生命現象の統合的理解を進めることを目指します。また、これらの理解を深めるための基盤解析技術の確立と活用展開、制御シーズの探索にも取り組みます。

2. 評価の概要

(1) 評価の実施時期

研究開発終了時に実施。

(2) 評価委員一覧

梅澤 明弘 (国立成育医療研究センター 研究所 所長)

大谷 直子 (大阪公立大学 大学院医学研究科 教授)

金井 弥栄 (慶應義塾大学 医学部 教授)

木村 宏 (東京科学大学 総合研究院 教授)

須原 哲也 (量子科学技術研究開発機構 副理事)

瀬原 淳子 (京都大学 医生物学研究所 連携教授)

角田 達彦 (東京大学 大学院理学系研究科 教授)

松本 満 (小松島天満クリニック 医師)

◎吉川 武男 (理化学研究所 脳神経科学研究センター センター長室長)

吉田 智一 (シスメックス株式会社 取締役/常務執行役員/CTO)

※◎委員長

(五十音順、敬称略)

(3) 評価項目

本評価委員会においては、以下の評価項目に基づき総合的に評価が実施された。

- ア 研究開発達成状況
 - ・研究開発計画に対する達成状況はどうか
- イ 研究開発成果
 - ・予定していた成果が着実に得られたか
 - ・当初計画では想定されていなかった新たな展開やそれによる成果が得られたか
 - ・成果は、科学技術上のインパクト、国内外の類似研究と比較した際のレベルや重要度な どの点で、質的に高いものであるか
 - ・成果は医療分野の進展に資するものであるか
 - ・成果は新技術の創出に資するものであるか
 - ・成果は社会的ニーズに対応するものであるか
 - ・成果は研究開発目標の達成に貢献し、社会的なインパクトを与えるものであるか
 - ・必要な知的財産の確保がなされているか
- ウ 実施体制
 - ・研究開発代表者を中心とした研究開発体制が適切に組織されていたか

- ・ユニットタイプについては、研究開発分担者を置いている場合は、十分な連携体制が構築されていたか
- ・国内外の研究者や臨床医、産業界等との連携によるネットワーク形成がなされたか
- ・研究開発費の執行状況は効率的・効果的であったか (各グループの研究開発費は有効に執行されたか、購入機器は有効に活用されたか等)

エ 今後の見通し

- ・今後研究開発成果のさらなる展開が期待できるか
- オ 事業で定める項目及び総合的に勘案すべき項目
 - ・生命倫理、安全対策に対する法令等を遵守していたか
 - ・ユニットタイプについては、若手研究者のキャリアパス支援が図られていたか
 - ・専門学術雑誌への発表並びに学会での講演及び発表など科学技術コミュニケーション活動 (アウトリーチ活動) が図られていたか
 - ・ソロタイプについては、制度として世界レベルの若手研究リーダーの排出も期待されている観点から、研究開発代表者の研究者としての飛躍につながったか、またはつながると期待されるか

カ総合評価

ア~オを勘案しつつこれらと別に評点を付し、総合評価を行う。

革新的先端研究開発支援事業ユニットタイプ(AMED-CREST) 令和元年度採択 研究開発課題 事後評価結果

1. 研究開発課題名:

ヒト胎盤の発生・分化に関する理解と臓器チップモデルの作製

- 2. 研究開発代表者名及び研究開発分担者名 (所属、役職は研究開発期間終了時):
 - (1)研究開発代表者

有馬 隆博 (東北大学 大学院医学系研究科 学術研究員)

(2)研究開発分担者

梶 弘和 (東京科学大学 総合研究院生体材料工学研究所 教授)

須山 幹太 (九州大学 生体防御医学研究所 教授)

岡江 寛明 (熊本大学 発生医学研究所 教授)

3. 評価結果

本研究開発では、妊娠高血圧症候群(HDP)の病態解明を目的に、疾患胎盤から分離した未分化細胞性栄養膜を解析して疾患エピゲノムプロファイルを構築し、国際エピゲノムコンソーシアム(IHEC)に登録した。また、ヒト子宮内膜細胞を用いた子宮内膜オルガノイドを作製しブラストイドの共培養による着床アセンブロイドモデルを構築した。さらに、HDPの診断バイオマーカーの探索や予測アプリの開発、大学発ベンチャー設立を行った。

胎盤のエピゲノム制御に関する知見の取得から、疾患TS(胎盤幹細胞)モデルの作製、胎盤オンチップモデルの作製、着床モデルの開発など、医療応用につながる多くの技術開発を行っており評価できる。また、ヒトの着床現象を模倣するモデルは臨床応用に大いに役立つ成果と考えられる。さらに、ハイレベルの国際的な学術誌への論文掲載、IHECへのデータ提供、特許出願や大学発ベンチャー設立など、基礎から臨床・事業化までを視野に入れた幅広い研究成果を挙げた。

以上より、当初計画に照らして極めて優れた成果が得られていると言える。

革新的先端研究開発支援事業ユニットタイプ(AMED-CREST) 令和元年度採択 研究開発課題 事後評価結果

1. 研究開発課題名:

ヒト新生児期、乳児期アレルギー発症に関与する Tfh2 反応メカニズムの解明

- 2. 研究開発代表者名及び研究開発分担者名 (所属、役職は研究開発期間終了時):
 - (1)研究開発代表者

上野 英樹 (京都大学 大学院医学研究科 教授)

(2)研究開発分担者

平岡 裕章 (京都大学 高等研究院 教授)

久保 允人 (東京理科大学 総合研究院 教授)

山本 拓也 (京都大学 iPS 細胞研究所 教授)

岩見 真吾 (名古屋大学 大学院理学研究科 教授)

3. 評価結果

本研究開発において、小児アレルギーにおける免疫応答を促進するTfh2細胞と、抑制するTfr細胞のそれぞれの機能異常のメカニズムを解明し、ヒトTfh細胞がTfr1細胞という制御性細胞へと分化することを発見した。さらに、鶏卵アレルギーが学童期以降まで続く患児に優位な鶏卵特異的CD4陽性T細胞サブセットを同定した。

ヒトTfh細胞が制御性Tfr1細胞へ分化する仕組みの発見や、そのエピジェネティックな制御機構の解明は重要な成果である。また、鶏卵アレルギー患児に多く見られる鶏卵特異的CD4陽性T細胞サブセットを特定しており、小児アレルギーの治療への寄与が期待できる。さらに、臍帯血や扁桃由来のNaiveT細胞の多様性に着目し、アレルギー誘導・抑制に関わるサイトカイン産生能の違いを明らかにした点も評価できる。今後は、Tfh細胞から制御性Tfr1細胞への変異に関与する因子の詳細なメカニズムを明らかにするのに加えて、分子遺伝学的な検証やin vitroでの再現などの実験手法の取り組みが期待される。

以上より、当初計画に照らして妥当な成果が得られていると言える。

革新的先端研究開発支援事業ユニットタイプ (AMED-CREST) 令和元年度採択 研究開発課題 事後評価結果

1. 研究開発課題名:

神経発達障害の病態解明を目指した革新的イメージングプラットフォーム

- 2. 研究開発代表者名及び研究開発分担者名 (所属、役職は研究開発期間終了時):
 - (1)研究開発代表者

岡部 繁男 (東京大学 大学院医学系研究科 教授)

(2)研究開発分担者

中澤 敬信 (東京農業大学 生命科学部 教授)

滝沢 琢己 (群馬大学 大学院医学系研究科 教授)

郷 康広 (自然科学研究機構 生命創成探究センター 教授)

赤松 和土 (順天堂大学 大学院医学研究科 担当教授)

3. 評価結果

本研究開発は、早期の脳発達障害の原因となる神経回路形成異常を解析する方法を開発することを目的として、革新的イメージング技術と患者由来iPS細胞、神経細胞移植技術を組み合わせて開発した。自閉症や統合失調症の病態解明に向けて、疾患マウスモデルを用いたシナプス形態の自動解析や遺伝子発現変化の同定を行い、疾患層別化の可能性を示した。さらに、患者由来iPS細胞のマウス脳への移植により、細胞レベルの障害や表現型を明らかにした。

患者由来iPS細胞を用いた神経細胞の分化・移植技術の確立や超解像顕微鏡によるシナプス形態解析の開発により、ヒト細胞レベルでの病態解析が可能となり治療標的の探索に貢献できる。また、疾患モデルマウスとヒトiPS細胞の融合的活用により、POGZ遺伝子が神経発達および社会性行動を制御していることを明らかにしたことは評価できる。さらに、ミスマッチ陰性電位の測定により統合失調症の症状である幻聴に関連する神経回路の特徴を抽出できたことは独自性が高く評価できる。今後は成果の論文化により、広く成果をアウトリーチすることが望まれる。

以上より、当初計画に照らして優れた成果が得られていると言える。

革新的先端研究開発支援事業ユニットタイプ (AMED-CREST) 令和元年度採択 研究開発課題 事後評価結果

1. 研究開発課題名:

胎児における神経幹細胞の制御はいかにして生後脳の発達と自閉症様行動に影響するか

- 2. 研究開発代表者名及び研究開発分担者名 (所属、役職は研究開発期間終了時):
 - (1)研究開発代表者

後藤 由季子 (東京大学 大学院薬学系研究科 教授)

(2)研究開発分担者

平田 祥人 (筑波大学 システム情報系 准教授)

3. 評価結果

本研究開発では、胎児期・生後発達期の神経幹細胞の挙動とその異常が脳機能に与える長期的影響を解明することを目的とし、前頭前皮質の形成異常と自閉症様行動の関連を分泌因子やシグナルの観点から解析し、また、神経幹細胞の分化制御に関わる因子(HMGA2、ポリコーム、DEK)やクロマチン構造解析法(RPR法)を開発した。さらに、胎児期・生後期のストレスが神経幹細胞やエピゲノムに与える影響と自閉症様行動との関係を明らかにした。

胎児期から生後にかけての神経幹細胞の制御が脳発達や自閉症様行動に与える影響を分子レベルで詳細に解明しており高く評価できる。特に、前頭前皮質のサイズ制御やポリコーム複合体によるエピジェネティックな調節機構の解明、HMGA2やLHX2などの因子の機能解析は重要な成果である。また、母体感染や早期孤立ストレスが脳発達に及ぼす影響の解析も高く評価できる。今後は研究開発成果をヒトへと応用展開していくことが望まれる。

以上より、当初計画に照らして優れた成果が得られていると言える。

革新的先端研究開発支援事業ユニットタイプ (AMED-CREST) 令和元年度採択 研究開発課題 事後評価結果

1. 研究開発課題名:

胎児・母体免疫クロストークによる生体恒常性維持と疾患感受性決定の分子基盤

- 2. 研究開発代表者名及び研究開発分担者名 (所属、役職は研究開発期間終了時):
 - (1)研究開発代表者

福井 宣規 (九州大学 生体防御医学研究所 教授)

(2)研究開発分担者

生長 幸之助 (産業技術総合研究所 触媒化学融合研究センター 主任研究員)

杉浦 悠毅 (京都大学 大学院医学研究科 特定准教授)

3. 評価結果

母体が胎児や新生児を守るための、①胎児の免疫特権形成におけるコレステロール硫酸(CS)やNK細胞の役割解明、②胎盤やミルクを介して移行する抗原特異的IgG・IgA抗体の生理的・病的意義、③MIAがアレルギー・神経発達障害といった疾患の感受性に与える影響、④IL-31の産生を阻害する低分子化合物リードの開発という4つのテーマに関して研究を進めた。

胎児を母体の炎症から守る胎盤の免疫バリア機能を解明しており評価できる。特に、胎盤で選択的に産生されるコレステロール硫酸(CS)が胎児保護に重要であることを示したことは高く評価される。また、母体の液性因子が胎児の脳発達に影響を与え、ADHD様行動を引き起こす可能性を発見した。アトピー性皮膚炎に関わるIL-31を抑制する低分子化合物(IPHBA)を開発した点も評価できる。さらに、DOCK2欠損マウスを用いた研究では、免疫特権や流産予防の新たな知見を得ている。これらの成果は、医療分野への貢献が大きいと期待される。今後は研究開発成果を広くアウトリーチすることを期待する。

以上より、当初計画に照らして優れた成果が得られていると言える。