課題管理番号: 243fa827003h0003 作成/更新日:令和7年4月14日

日本医療研究開発機構 ワクチン・新規モダリティ研究開発事業 事後評価報告書

公開

I 基本情報

研究開発課題名: (日本語) AAV (アデノ随伴ウイルス) を活用した次世代型サブユニットワクチンの研究開発 (英 語) Research and development of next-generation subunit vaccines using AAV (adeno-associated virus)

研究開発実施期間:令和4年12月1日~令和7年3月31日

研究開発代表者 氏名:(日本語) 岡田 尚巳 (英 語) OKADA, Takashi

研究開発代表者 所属機関・部署・役職:

(日本語) 国立大学法人東京大学・医科学研究所・教授

(英語) The Institute of Medical Science, The University of Tokyo · Professor

II 研究開発の概要

研究開発の成果およびその意義等

安全性と有効性を兼ね備えた次世代型アデノ随伴ウイルス(AAV)およびエクソソームを用いたワクチンモダリティの開発を行った。具体的には、AAV単体、エクソソーム単体、およびベクソソーム(AAVとの複合体、AAVexosome)を用いたワクチンの安全性、免疫原性を確認するため、COVID-19をモデル疾患として、迅速なワクチンの開発およびバイオ医薬品(遺伝子治療用製品)としてのウイルスベクターの製造、薬事承認に関する体制および平時の製造・運用体制を整え、「フラッグシップ拠点」との連携、導出先の選定を通じて、感染症有事に迅速にワクチンを開発し提供を行う体制の基盤構築を行った。COVID-19に対して主流であるmRNAワクチンは、開発・製造に必要な期間が短く、高い抗体価を得ることができる優れたワクチンである。一方、低温貯蔵設備が必要であること、PEGアレルギーが原因の投与禁忌対象者がいること、今後mRNAワクチンが有効性を示さない感染症が現れる可能性があることなど、mRNAワクチンだけに依存することはリスクが高いと考えられる。また、安定性と長期免疫に優れる次世代ウイルスベクターワクチンとしてアデノウイルスベクターワクチンが使用されているが、複数回投与ができないこと、強い副反応に見合うほどの免疫効果が得られないなどの問題点が指摘されている。そこで、遺伝子治療分野で多くの使用実績があり、長期遺伝子発現や安全性が確立している AAV ベクターと、近年注目を集めている生体内粒子であるエクソソームから製造されたベクソソームを利用した新規ワクチンモ

ダリティの開発を行った。

本研究の意義として、申請者らの研究室で確立した効率的および高純度ベクター製造に関する独自技術を活かし、AAV ベクターとエクソソームを組み合わせたベクソソームによる有効性の改善と副反応軽減効果を検証することが挙げられる。ベクソソームは、アジュバントとして免疫応答を引き起こす抗原の提示を維持する可能性があり、さらに AAV ベクターに対する中和抗体の認識を回避できると期待される。

各研究開発課題の進捗状況に関して以下にまとめる。

1) AAV ベクソソームワクチン開発

a. 封入 AAV 規格の検討

・プロモーター、polyA の規格試験

抗原を高発現する発現調節配列の最適な組み合わせを検証するため、promoter 4 種、polyA 2 種に加え、enhancer 2 種、intron 5 種を用いて AAV ベクターを作製し、ヒト培養細胞を用いた *in vitro* およびマウスを用いた *in vivo* で評価し、規格を決定した。

・GOI の検討

抗原の発現安定性、熱安定性、および感染防御効果を向上させるため、SARS-CoV-2 スパイクタンパク質の 6 箇所をプロリンに置換した hexa-Proline 変異体(HexaPro)配列を合成し、発現を確認した。また、膜貫通ドメイン(TMD)配列の免疫効果に対する影響を検証するため、TMD を含む(または除去した)SARS-CoV-2 HexaPro スパイクタンパク質全長配列を搭載した AAV ベクターを作製し、マウスに投与して特異 IgG 抗体を評価した。

b. ベクソソーム調製および効率の高い封入工程の確立

ベクソソーム調製および効率の高い封入工程の確立のために、pre-loading 法と post-loading 法の双方を試行し、現時点では post-loading 法がより安定し高効率と判断された。

c. 免疫獲得試験

・中和抗体測定

上記で最適化した発現力セットを搭載した数種類の血清型の AAV ベクターを作製し、マウスに投与して血清型の規格化を行った。抗原を高発現した条件においてベクソソームを作製し、マウスに投与して特異 IgG 抗体を評価した。

・チャレンジ

上記で最適化した発現カセットを搭載した AAV ベクターおよびベクソソームを作製し、ヒト ACE2 Tg マウスに 既存の mRNA ワクチン (mRNA-1273) と同程度の抗体産生を示す条件で投与した。投与 8 週後、SARS-CoV-2 を曝露 させ、感染防御効果を比較評価した。

また、同様にしてカニクイザルに投与し、8週後、SARS-CoV-2を曝露させ、感染防御効果および発症予防効果を評価した。

2) 大量調製の基盤技術開発

a. 大量調製法の開発

エクソソームに AAV ベクターを封入する方法として、冷却混和法、超音波法、エレクトロポレーション法を検討した。 さらに、AAV ベクターに対する中和抗体の存在下で、ベクソソームの培養細胞への高い遺伝子導入効率が観察された。

2

b. 機能解析·分析

エクソソーム: AAV の混合比率の異なるベクソソームを作製し、培養細胞を用いた感染効率を評価した。

3) 小規模 GMP 施設の構築と稼働

a. GMP 製造に向けた細胞選定

協力企業とライセンス交渉を完了し、産生細胞の性能確認を行った。

b. 25 L スケールでの非 GMP 生産

・第1-2回目検討

振とう型培養装置を用いて、25 L スケール非 GMP 生産第 1 回、第 2 回を実施した。協力企業製デプスフィルターの有効性を検証した。

・第3-4回目検討

振とう型培養装置を用いて、25 L スケール非 GMP 生産第3回、第4回を実施した。協力企業製デプスフィルターの有効性を検証した。

c. 小規模 GMP 製造

・SOP 整備と試験製造

GMP コンサルとサニテーションに関する打ち合わせ、および各協力企業のワークショップや施設を見学し、情報収集を行った。GMP コンサルと相談しながら SOP 整備を進め、人材育成および関連領域の理解を深めるため、セミナーを実施した。

· GLP 試験用製剤製造

協力企業と GMP グレード試験製造に関するミーティングを毎月実施した。ベクソソームの試験製造を実施し、QC 項目の選定および評価系の確立を行った。

• 施設整備(医科研)

ワクチンプロセスを検討し、「再生・細胞医療・遺伝子治療研究実用化支援課題 E-1」と連携し、施設拡張整備を完了した。今後の試験製造に向け準備中である。

3

4) 非臨床試験、規制対応 (PMDA)

- a. ワクチン相談、カルタヘナ法対応
 - 第二種

ヒトACE2 Tgマウスを用いた実験に関して、大臣確認申請を行った。

・第一種

事前面談準備を行った。

b. 非臨床安全性試験

· PMDA 戦略相談

事前面談準備を行った。

・安全性試験 (GLP)

事前面談準備を行った。

c. 非臨床 PoC 試験

· PMDA 戦略相談

事前面談準備を行った。

・非臨床 PoC 試験 (GLP)

事前面談準備を行った。

d. 品質相談

· PMDA 戦略相談

GOI の規格や由来に関する相談を実施した。

• 規格設定

PMDA の助言を得て、AAV ベクターの規格を決定した。

II Summary of Research and Development

Results and their significance

We developed safe and effective vaccine modalities using next-generation adeno-associated virus (AAV) and exosomes. To confirm the safety and immunogenicity of vaccines using AAV alone, exosomes alone, or exosome-AAV complexes (vexosomes), we established a preparedness platform to ensure rapid deployment of effective vaccines during future infectious disease outbreaks, in collaboration with the national "Flagship Center". mRNA vaccines, which are the mainstream vaccines for COVID-19, are excellent vaccines that require a short development and production period and can produce high antibody titers. On the other hand, relying solely on mRNA vaccines is considered risky due to the need for low-temperature storage facilities, the existence of people who should not receive the vaccine due to PEG allergy, and the possibility of the emergence of infectious diseases for which mRNA vaccines are not effective in the future. Additionally, adenoviruses have been used as nextgeneration viral vector vaccines due to their stability and ability to produce long-term immunity. However, several issues have been identified, including the inability to administer them multiple times and immune effects that are outweighed by strong side effects. Thus, we developed a new vaccine modality using adeno-associated virus (AAV) vectors, which have a long track record of use in gene therapy, as well as vexosomes derived from exosomes. These biological particles have attracted attention in recent years.

This study aims to use the applicants' laboratory's proprietary technology to efficiently produce highly purified vectors and verify the improvement of vexosome efficacy and the reduction of side effects. Vexosomes are produced by combining AAV vectors with exosomes and can act as adjuvants that maintain antigen presentation to trigger an immune response. They are also expected to prevent the recognition of AAV vectors by neutralizing antibodies.

The following is a summary of the progress of each R&D project.

1) AAV Vexosome Vaccine Development

a. Examination of standards for AAV encapsulation

• Evaluation of promoters and polyA sequences

To evaluate the optimal combination of expression regulatory sequences for high antigen expression, AAV vectors were created using four promoters and two polyAs, as well as two enhancers and five introns. The AAV vectors were evaluated in vitro using cultured human cells and in vivo using mice, and the standards were determined.

· Evaluation of the GOI

To improve the stability of the antigen expression, its thermal stability, and the efficacy of the protection against infection, we synthesized and evaluated the expression of a hexa-proline mutant (HexaPro) in which six positions of the SARS-CoV-2 spike protein were replaced with proline. Additionally, to evaluate the effect of the transmembrane domain (TMD) sequence in the immune response, we generated an AAV vector carrying the full-length SARS-CoV-2 HexaPro spike protein sequence, including and excluding the TMD and administered it to mice to compare the production of specific IgG antibodies.

b. Establishment of Vexosome preparation and efficient inclusion process

Both pre-and post-loading methods were tried to establish an efficient preparation and inclusion process, it was determined that the post-loading method was the most stable and efficient.

c. Evaluation of the immunogenicity

· Neutralizing antibody test

Several serotypes of AAV vectors carrying the optimized expression cassette were produced and administered to mice to standardize the serotypes. Vexosomes were produced with the identified conditions for high antigen expression and administered to mice to evaluate the production of specific IgG antibodies.

· Challenge

AAV vectors and vexosomes carrying the optimized expression cassette were produced and inoculated into human ACE2 transgenic (Tg) mice under conditions that produced comparable levels of human response to that of the existing mRNA vaccine (mRNA-1273). Eight weeks after administration, the mice were exposed to SARS-CoV-2 to evaluate the protective effects against infection.

Additionally, the vectors were similarly administered to cynomolgus macaques. Eight weeks after inoculation, the macaques were exposed to SARS-CoV-2, and the protective effects were also evaluated.

2) Development of basic technologies for large-scale production

a. Development of methods for large-scale production

We investigated three methods for encapsulating AAV vectors in exosomes: cold mixing, ultrasonic, and electroporation. Furthermore, we observed the high gene transfer efficiency of exosomes in cultured

5 Ver.20240401

cells despite the presence of neutralizing antibodies against AAV vectors.

b. Functional analysis

Vesicles with various exosome-to-AAV mixing ratios were produced and their infection efficiency was evaluated using cultured cells.

3) Construction and operation of a small-scale GMP facility

a. Cell selection for GMP production

License negotiations were completed with cooperating companies, and the performance of the produced cells was confirmed.

b. Non-GMP production at the 25-liter scale

First and second trials

The first and second 25-liter scale non-GMP production runs were conducted using shaking-type culture equipment. The effectiveness of the depth filter made by a partner company was verified.

· Third and fourth trials

The third and fourth 25-liter scale non-GMP production runs were conducted using a shaking incubator. The effectiveness of the depth filter manufactured by the partner company was verified.

c. Small-Scale GMP Manufacturing

SOP development and manufacturing test

Meetings were held with GMP consultants regarding sanitation. Workshops and facilities of various cooperating companies were visited to gather information. Seminars were held to promote SOP development in consultation with GMP consultants, as well as to deepen the understanding of related areas.

Manufacture of formulations for GLP testing

Monthly meetings were held with cooperating companies regarding GMP-grade test manufacturing. Test manufacturing of vexosomes was carried out, quality control items were selected, and an evaluation system was established.

• Facility development (The Institute of Medical Science)

Vaccine processes were examined, and the facility was expanded and developed in collaboration with the "Programs on Regenerative Medicine and Cell and Gene Therapies, Practical Application Support Project E-1". Preparations are currently underway for future test manufacturing.

4) Pre-clinical studies, regulatory support (PMDA)

a. Vaccine consultation, Cartagena Act support

· Class 2

Ministerial confirmation filed for experiments using human ACE2 transgenic mice.

· Class 1

Preparations were made for the preliminary interview.

b. Non-clinical safety study.

• PMDA strategy consultation.

Preparations were made for the preliminary interview.

• Safety studies (GLP)

Preparations were made for the preliminary interview.

c. Non-clinical PoC study

• PMDA strategy consultation

Preparations were made for the preliminary interview.

• Non-clinical PoC study (GLP)

Preparations were made for the preliminary interview.

d. Quality consultation

· PMDA strategy consultation

Consultation was conducted on the standards and source of the GOI.

• Setting of standards

With advice from the PMDA, the standards for AAV vectors were determined.

7 Ver.20240401