ワクチン・新規モダリティ研究開発事業 事後評価結果報告書

1. 事後評価を実施した課題

課題名	AAV (アデノ随伴ウイルス) を活用した次世代型サブユニットワク
	チンの研究開発
研究開発代表者	国立大学法人東京大学 医科学研究所 教授 岡田 尚巳
公募枠	重点感染症にも応用可能性が見込める新規モダリティの研究開発

2. 本課題の概要

本課題は、安全性と有効性を兼ね備えた次世代型アデノ随伴ウイルス(AAV)と細胞外小胞(エクソソーム)を組み合わせたベクソソームを新たなワクチンモダリティとして開発することを目指したものである。

3. 評価結果

当研究課題の遂行により、目的抗原を高発現させる最適な GOI (Gene of Interest) 配列を組み込んだ封入 AAV 規格の決定、冷却混和法による暫定ベクソソーム調製法を確立した。また、AAV 封入ベクソソームは ACE2 Tg マウスでの SARS-CoV-2 武漢株による攻撃性試験で、AAV 単独や既存 mRNA ワクチンと同等の感染防御効果を示した。さらに、AAV 封入ベクソソームは AAV 単独と比べ、細胞導入効率の向上や抗 AAV 中和抗体からの攻撃回避、スパイク抗原に対する早期の抗体誘導といった特性を示した。一方、AAV 封入ベクソソームは AAV 単独や既存 mRNA ワクチンと比して、薬効面における明確な優位性は示されなかった。また、エクソソームへの AAV 封入率の評価法開発や AAV 封入率と免疫原性との関連性は検証できておらず、製法の安定性や再現性についても検討課題である。

以上の結果より、開発難易度の高いベクソソームのワクチン利用を訴求するに足る成果は得られておらず、第 I 相試験の実施までに解決すべき検討項目も数多く存在することから、研究計画案に提示された目標の達成見込みは低いと想定され、「計画した成果を下回る成果にとどまった」と判断した。

ベクソソームは最先端のバイオモダリティを組み合わせた新規性の高いモダリティであり、実用化においては各々のモダリティに対する規格設定・品質保証・生産性や安定製造法等の広範な技術開発が必要であると思われる。

以上