

日本医療研究開発機構 ゲノム創薬基盤推進研究事業 事後評価報告書

公開

I 基本情報

研究開発課題名： (日本語) 薬剤性パーキンソニズムのファーマコゲノミクスに関する医療実装開発
(英 語) Development of clinical implementation of pharmacogenomics
in drug induced parkinsonism

研究開発実施期間：令和4年4月1日～令和7年3月31日(予定)

研究開発代表者 氏名：(日本語) 佐竹 渉
(英 語) Wataru Satake

研究開発代表者 所属機関・部署・役職：

(日本語) 東京大学医学部附属病院・脳神経内科・准教授
(英 語) Department of Neurology, The University of Tokyo, Associate Professor

II 研究開発の概要

薬剤性パーキンソニズム (Drug-Induced Parkinsonism (DIP)) は、薬剤の副作用により生じるパーキンソン病類似の症状であり、動作緩慢や筋強剛などの運動障害症状を来たす。DIP は主として脳内ドパミン神経細胞の機能抑制作用を有する薬剤により誘発され、具体的には、抗精神病薬 (ブチロフェノン誘導体・フェノチアジン誘導体・非定型抗精神病薬・ベンザミド誘導体)、抗うつ薬 (三環系・四環系)、認知症治療薬 (ドネペジル)、抗てんかん薬 (デパケン)、消化器系薬 (ベンザミド誘導体・抗潰瘍薬)、循環器系薬 (カルシウム拮抗薬・抗不整脈薬) など、多数かつ多種多様な薬剤が起因薬となる。DIP は高齢になるほど出現しやすく、高齢者のボリファーマシーの問題とあいまって、さらにその危険度は増す。ドパミン D2 受容体遮断作用が強いブチロフェノン誘導体・フェノチアジン誘導体の使用が控えられ非定型抗精神病薬が用いられるようになり激烈な DIP の頻度は減ったものの DIP は依然存在し、パーキンソン病症状の悪化により運動は障害され、寝たきりや転倒・骨折につながり、ADL は顕著に障害される。そういうことから、厚労省重篤副作用総合対策事業において DIP は重篤薬剤副作用の一つとされており、DIP 対策のための有効なファーマコゲノミクスの活用は、国民医療的に重要な福音となる。

そこで、本研究では、薬剤性パーキンソニズムの易出現性に対して、ファーマコゲノミクスによる解析を実施した。具体的には、まず、抗精神病薬を内服している患者個々人に対し DIP の臨床評価スコア (DIEPSS・SAS) を取得し、各種臨床情報と DNA を紐付けした、国際的にも貴重な「薬剤性パーキンソニズム(DIP)遺伝子レジストリ」を創出し、計画想定を超える 495 例を新規に登録した。臨床情報を精緻化することにより、男/女比 1.70、平均採血時年齢 53.0(16-86)、平均発症年齢 25.2 歳(11-50)、平均罹病期間 26.1 年(0.5-61)、平均抗精神病薬内服量 (CP 換算値) 860.0(25-4090) 等の情報を得た。得られた Drug Induced Extra-Pyramidal Symptoms Scale (DIEPSS) 値のスコアを解析することにより、抗精神病薬内服加療を受けている患者のうち DIP を有する症例の割合や、DIP の各症状の割合が明らかとなった。つまり、DIEPSS の DIP 関連 5 項目の総和 (最大 20 点) において、0 点が

48%、1点が12%、2点が14%、3点が7%、4点以上が19%であり、52%の症例で1点以上のDIP症状が見られることが判明した。さらに、DIEPSSの下位分類で、1点以上のスコアを有する症例は、歩行で32%、動作緩慢で45%、流涎で16%、筋強剛で11%、振戦で20%存在するなど、DIPの臨床像が明らかとなった。また、アカシジアは7%、ジストニアは6%、ジスキネジアは8%の症例で観察された。

これらは、最近の本邦のDIPに関する臨床疫学データとして、非定型抗精神病薬が主に用いられる現在でも高頻度にDIPは存在し、その臨床像をしめす大規模かつ希少で重要なデータであり、臨床実地での診療の助けとなる。抗精神病薬内服量（クロルプロマジン換算値）の多寡によりグループ分けし、DIEPSS5項目値をまとめたところ、高容量(1200以上)内服でも50%の症例ではDIPは観察されず、一方で、少容量(400以下)内服でも50%の症例で1点以上のDIPが観察されるなど、DIPの出現は内服量で一義的に決まるものではなく、遺伝背景など患者個々によりDIPの易出現性は異なることが推測された。同様のことは、アカシジア、ジストニア、ジスキネジアにおいても観察された。

また、DIPの症状スコアリングに関して、Drug Induced Extra-Pyramidal Symptoms Scale (DIEPSS)以外に、Simpson-Angus Scale for Extrapyramidal Side Effects (SAS) が存在する。国際的にはSASのほうが汎用される傾向にあるが、本邦ではSASは使用されておらず、和訳も存在せず、和訳を作成しスコアリングを行い、DIEPSS値とSAS値の相関を検討したこと、相関係数0.70-0.71の相関を認め、両スコアは一定の代替可能なスコアであることが示された。

薬剤性パーキンソニズム(DIP)遺伝子レジストリ

1. 基本臨床情報

発症年齢・性別・内服薬・内服量・家族歴等

2. 薬剤性パーキンソニズムスコア

・DIEPSS

(Drug Induced Extra-Pyramidal Symptoms Scale : 薬原性錐体外路症状評価尺度)
・SAS

(Simpson-Angus Scale for Extrapyramidal Side Effects : シンプソン-アンガス錐体外路系副作用評価尺度)

3. 悪性症候群の有無・高CK血症

4. DSM-IV TR, DSM5

5. 統合失調症症状スコア

・PANSS (positive and negative syndrome scale : 陽性・陰性症状評価尺度)

薬剤性パーキンソニズムスコア・詳細臨床情報と遺伝子を紐付けした貴重なレジストリ

抗精神病薬の
重篤な2大副作用

さらにこのDIP遺伝子レジストリの患者DNAをWGS解析し、計画期間3年で547例のWGSを実施した。WGSは血液から抽出したゲノムを用い、Bead-Linked Transposomes PCR-Freeを使用し、DNAの断片化およびアダプターを付加した550 bp インサートのシークエンスライブライマーを作製した。ライブライマー作製には、Illumina DNA PCR-Free Library Prep, Tagmentation (24/96 Samples) (型番: 20041794/20041795) (イルミナ社)、IDT for Illumina® DNA/RNA UD Indexes Set A/B, Tagmentation (96 Indexes, 96 Samples) (型番: 20027213/20027214) (イルミナ社)を用いた。NovaSeq6000システム(イルミナ社)を用いて、150塩基対のペアエンドシークエンスを行った。検体当たりのデータ量は基本的には、重複リードを除き正常細胞由来のデータで900億塩基(90G塩基)を取得した。WGS解析系として、SNVやindelの検出に関して、Parabricks v3.6.1(bwe 0.7.15とgatk 4.1.0.0とcompatible)を用いたWGSの解析系を構築した。WGSデータからMantaまたはWhamgを用いたSV解析系を構築した。depthや、FastQデータのquality checkは良好であった。Aligned read、mismatch、duplicationの割合は外れ値もなく、freemix値も問題なく、全体として良好なデータを得た。

これらのゲノム解析と臨床情報を合わせることにより、薬剤性パーキンソニズムの易出現性に有意に寄与する遺伝子を見出し、別の患者セットでも結果を再現することに成功し、本研究において薬剤性パーキンソニズムに有意に寄与する遺伝子を発見することに成功した。有意であった遺伝子変異はいずれも一般集団ではまれであるが、足し合わせると、一般集団の 4.1%が薬剤性パーキンソニズムの易出現性をきたす遺伝子変異を有しており、一般集団から DIP を容易に来す患者群を予見することができた。さらに、WGS からの検出系や簡易検査法を作成し、実臨床において試験的な医療実装を行った。

本研究において、DIP の臨床疫学が解明され、非定型抗精神病薬が用いられている現在においても薬剤性パーキンソニズムが高頻度に存在していることなど、臨床実地への啓発となる。ファーマコゲノミクスは重要なゲノム臨床応用の分野であり、がん医療において主に進展しているが、精神神経疾患分野においては未だ数少ない。本研究において、精神神経疾患分野のファーマコゲノミクスを開発し、当該医療に試験的に新たな手法を導入することができた。

Drug-Induced Parkinsonism (DIP) is a Parkinson's disease-like condition caused by medication side effects, resulting in motor symptoms such as bradykinesia and rigidity. DIP is primarily induced by drugs that inhibit dopamine neuron function in the brain. Specifically, these include antipsychotics (butyrophenone derivatives, phenothiazine derivatives, atypical antipsychotics, benzamide derivatives), antidepressants (tricyclic, tetracyclic), dementia treatments (donepezil), antiepileptics (Depakene), gastrointestinal drugs (benzamide derivatives, antiulcer drugs), and cardiovascular drugs (calcium channel blockers, antiarrhythmics). DIP becomes more likely with advancing age, and its risk increases further when combined with the issue of polypharmacy in the elderly. Although the use of butyrophenone derivatives and phenothiazine derivatives, which have strong dopamine D2 receptor blocking effects, has been curtailed in favor of atypical antipsychotics, reducing the frequency of severe DIP, DIP still occurs. It impairs movement due to worsening Parkinson's disease symptoms, leading to bedridden states, falls, fractures, and significantly impaired ADL. Consequently, DIP is classified as a serious drug adverse reaction under the Ministry of Health, Labour and Welfare's Comprehensive Measures for Serious Adverse Reactions program. The effective application of pharmacogenomics for DIP countermeasures represents a significant public health benefit.

Therefore, this study conducted pharmacogenomic analysis to investigate susceptibility to drug-induced parkinsonism. Specifically, we first obtained clinical evaluation scores for DIP (DIEPSS/SAS) for each individual patient taking antipsychotics. We then created the internationally valuable "Drug-Induced Parkinsonism (DIP) Gene Registry," linking various clinical information with DNA. We newly registered 495 cases, exceeding the planned target, and created recent clinical epidemiological data on DIP in Japan, refining the clinical information. This clinical epidemiological data represents a large-scale, rare, and important dataset demonstrating that DIP remains prevalent even in the current era where atypical antipsychotics are predominantly used, and it aids clinical practice. When grouping patients by antipsychotic dosage (chlortiprazine equivalent) and summarizing DIEPSS5 scores, DIP was not observed in 50% of cases even at high doses (≥ 1200 mg/day). Conversely, even at low doses (≤ 400 mg), DIPs of ≥ 1 point were observed in 50% of cases. This suggests that DIP occurrence is not solely determined by dosage and that individual patient factors, such as genetic background, influence susceptibility. Similar observations were made for akathisia, dystonia, and dyskinesia.

Regarding DIP symptom scoring, besides the Drug Induced Extra-Pyramidal Symptoms Scale (DIEPSS), the Simpson-Angus Scale for Extrapyramidal Side Effects (SAS) exists. Internationally, SAS tends to be more widely used. However, SAS is not used in Japan, and no Japanese translation exists. We created a Japanese translation, performed scoring, and examined the correlation between DIEPSS and SAS values. A correlation coefficient of 0.70-0.71 was observed, indicating that both scores are reasonably interchangeable.

Furthermore, WGS analysis was performed on patient DNA from this DIP gene registry, with 547 WGS samples completed within the planned 3-year period. WGS utilized genomes extracted from blood. Bead-Linked Transposomes PCR-Free was employed to create sequencing libraries with 550 bp inserts, involving DNA fragmentation and adapter addition. Pair-end sequencing at 150 base pairs was performed using the NovaSeq 6000 system (Illumina). The data volume per sample was essentially 90 billion bases (90G base) of data derived from normal cells, excluding duplicate reads. For WGS analysis, we established a workflow using Parabicks v3.6.1 (compatible with BWE 0.7.15 and GATK 4.1.0.0) for detecting SNVs and indels. We also built a workflow for SV analysis using Manta or Wham on the WGS data. Read depth and FastQ data quality checks were satisfactory. The proportions of aligned reads, mismatches, and duplications showed no outliers, and the freemix values were acceptable, yielding overall high-quality data.

By combining these genomic analyses with clinical information, we identified genes significantly contributing to susceptibility to drug-induced parkinsonism. We successfully replicated these results in another patient cohort, thereby discovering genes significantly contributing to drug-induced parkinsonism in this study. Although each significant genetic variant is rare in the general population, cumulatively, 4.1% of the general population carries genetic variants predisposing them to drug-induced parkinsonism. This allowed us to predict which patients in the general population are likely to develop

DIP. Furthermore, we developed detection systems and simplified testing methods from WGS and conducted pilot medical implementation in clinical practice.

This study elucidates the clinical epidemiology of DIP and highlights that drug-induced parkinsonism remains prevalent even with current atypical antipsychotic use, providing valuable insights for clinical practice. Pharmacogenomics is a crucial field of genomic clinical application, primarily advancing in cancer medicine, but remains relatively underdeveloped in neuropsychiatric disorders. This study developed pharmacogenomics for neuropsychiatric disorders and experimentally introduced new methodologies into this medical field.