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We aimed to develop multimodal functional mapping to bridge macroscopic level (~10 mm) to
microscopic level (cellular level, 10 microns), and achieved it by developing multiple techniques
of functional mapping. First, we successfully measured hemodynamic and calcium signals
simultaneously from wide field of view (~10mm) with wide-field calcium imaging. Second, by
using this method, we examined the resting-state functional connectivity based on hemodynamic
signal, which is often used in fMRI, and found that functional connectivity derives from
propagating waves of spontaneous activity of neurons (Matsui et al., 2016, PNAS). Third, by
using the same method, we achieved functional mapping of the entire dorsal cortex of mice (~10
mm) with a better spatial and temporal resolution than fMRI (Murakami et al., 2015). Fourth,
We developed a 1-photon wide-field functional mapping techniques with single cell resolution,
and simultaneously measured cellular level neuronal activity in superficial layers global activity
in deep layers, and hemodynamic signals. This technique will be useful for studying the relation
between hemodynamic signal to neuronal activity at cellular level. Fifth, we developed a
2-photon wide-field (~5 mm) functional mapping techniques with single cell resolution. With
these multiple functional mapping techniques described above, we can seamlessly bridge the gap
between macroscopic observations obtained with hemodynamic signal, such as fMRI, and
microscopic functional mapping at cellular level obtained with 2-photon calcium imaging, which
will contribute to the advance of this Brain/MINDS project. For the functional mapping of
marmoset brain, we successfully introduced calcium indicator in a wide area (8x6 mm) of the
marmoset visual cortex, and successfully obtained orientation maps in marmoset V1 and V2,
and found that they are organized in a columnar fashion. This result suggests that functional
architecture of marmoset visual cortex is similar to that in macaque visual cortex, and marmoset

visual cortex can be used as a model system for studying primate visual system.
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