平成26-28年度 委託研究開発成果報告書

I. 基本情報

事業名：（日本語）難治性疾患等克服研究事業（難治性疾患等実用化研究事業（難治性疾患実用化研究事業）
（英語）Practical Research Project for Rare / Intractable Diseases

研究開発課題名：（日本語）神経筋接合部・骨格筋の興奮伝達障害の病態解明と治療法開発研究
（英語）Elucidation of pathomechanisms and development of therapeutic options for defective signal transduction at the neuromuscular junction and the skeletal muscle

研究開発担当者：（日本語）国立大学法人名古屋大学 教授 大野欽司
所属役職氏名：（英語）Division of Neurogenetics, Nagoya University Graduate School of Medicine, Professor, Kinji Ohno

実施期間：平成26年4月1日～平成29年3月31日

分担研究

課題名：（日本語）アンチセンスオリゴヌクレオチドによるスプライシング制御研究
（英語）Regulation of splicing by antisense oligonucleotides

研究開発担当者：（日本語）石浦章一 学校法人同志社 同志社大学 生命医科学部・特別客員教授
所属役職氏名：（英語）Faculty of Life and Medical Sciences, Doshisha University, Distinguished Visiting Professor, Shoichi Ishiura
分担研究：（日本語）シュワルツジャンペル症候群の病態解明と治療法開発研究
開発課題名：（英語）Elucidation of pathomechanisms and development of therapeutic options for Schwartz-Jampel syndrome
研究開発分担者：（日本語）平澤 恵理 （学校法人順天堂 大学院医学部医学研究所老性疾病病態・治療研究センター 教授）
所属役職氏名：（英語）Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Professor, Eri Arikawa-Hirasawa

分担研究：（日本語）周期性四肢麻痺、先天性ミオトニア、先天性パラミオトニアの病態解明と治療法開発研究
開発課題名：（英語）Elucidation of pathomechanisms and development of therapeutic options for periodic paralysis, myotonia congenita, and paramyotonia congenita
研究開発分担者：（日本語）高橋 正紀 （国立大学法人大阪大学 大学院医学系科学研究機能診断科学 教授）
所属役職氏名：（英語）Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Professor, Masanori P. Takahashi
II. 成果の概要（総括研究報告）

和文
1. 基盤的研究として脊髄前角前角細胞の laser capture microdissection にて新規に 3 種類の神経筋接合部(NMJ)構築誘導因子を同定しノックアウトマウスによる機能解析を行った(Sci Rep 6: 28512, 2016; under revision; and in preparation)。
 (ii) CMS におけるアセチルコリン受容体遺伝子変異の機能解析を報告した(Sci Rep 4: 6841, 2014; Hum Gene Ther, in press)。
 (iii) 神経筋接合部発現分子の正常スプライシング制御機構を明らかにするとともに(Sci Rep 5: 13208, 2015)、CMS におけるスプライシング変異の分子病態機構を明らかにした(Sci Rep 6: 28512, 2016; under revision; and in preparation)。
 (iv) CMS における細胞外マトリックス分子 ColQ 欠損症に対する治療法として開発をした protein-anchoring therapy が細胞外マトリックス分子 biglycan 欠損モデルマウスにも有効であることを明らかにした(Hum Gene Ther, in press)。
 (vi) Kir3.4 (KCNJ2 遺伝子) 変異が周期性四肢麻痺と不整脈を主徴とする Andersen-Tawil 症候群の新規原因遺伝子であることを細胞生理学的な検証を含めて明らかにした(Neurology 82: 1058, 2014)。
 (viii) チャネル病関連疾患である筋強直性ジストロフィーにおける心臓伝導障害が心筋型 Na チャネルのスプライシング異常によることを明らかにした(Nat Commun 7: 11067, 2016)。
3. 患者(COLQ 変異、CHRNA1, DOK7, GFPT1 変異、SJS 患者、PP 患者から iPSC の樹立を行い in vitro NMJ ならびに myotubes を作成し、CMS-iPSC と SJS-iPSC では薬効確認ならびに薬剤スクリーニングのためのアッセイ系を立ち上げた。
4. 薬剤 X がアセチルコリン受容体(AChR)クラスター促進作用があることを同定し、モデル動物において効果を確認した(in preparation)。
5. 抗てんかん薬・抗パーキンソン病薬ゾニサミドが脊髄前角細胞神経突起延長促進作用があることを同定し、モデル動物で効果を確認した(PLoS One 10: e0142786, 2015)。
6. CHRNA1 遺伝子 exon P3A のアンチセンスオリゴによるスキッピング誘導を細胞レベルで実証した(unpublished)。
7. GFPT1 遺伝子 exon 9 の選択的スプライシング制御に関わる 3 種類の RNA 結合タンパクを同定し、これらタンパクが結合する splicing cis-elements を同定するとともに、GFPT1 酵素活性を上昇させる 2 種類の新規治療法を開発した(in preparation)。
1. Laser capture microdissection of the spinal cord of wild-type mice revealed three novel molecules that facilitate clustering of acetylcholine receptors. We proved the effects of these molecules by analyzing knockout mice by morphological, ultra-morphological, biochemical, and electrophysiological methods (Sci Rep 6: 28512, 2016; under revision; and in preparation).

2. We performed 10 research projects to elucidate molecular pathomechanisms of congenital myasthenic syndromes (CMS), Schwartz-Jampel syndrome (SJS), and periodic paralysis (PP). We also reported our achievements in review articles (eLS, 2014; J Mol Neurosci 53: 359, 2014; Clin Exp Neuroimmunol 7: 246, 2016; J Neurochem, in press).
 (i) We proved that LRP4 is a novel causative gene for CMS. We found that positions within a specific domain determine whether a mutation affect agrin/LRP4/MuSK signaling causing CMS or Wnt/beta-catenin signaling causing hyperotosis (Hum Mol Genet 23: 1856, 2014; JAMA Neurol 72: 889, 2015).
 (ii) We performed functional and electrophysiological characterization of mutations in acetylcholine receptor subunits in CMS in Japan (Neuromuscular Disorder 25: 60, 2015; Hum Mutat 37: 1051, 2016).
 (iv) We previously developed a novel therapeutic strategy that we named the protein-anchoring therapy for endplate acetylcholinesterase deficiency caused by defects of an extracellular matrix molecule, collagen Q. We applied the protein-anchoring therapy for a defect of another extracellular matrix molecule, biglycan, in mice (Hum Gene Ther, in press.).
 (v) Being prompted by a mutation at intronic position -5 in a patient with CMS, we developed a novel tool, IntSplice, to predict splicing errors caused by intronic mutations (J Hum Genet 61: 633, 2016), and started a web service program (https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice/).
 (vi) We identified and electrophysiologically characterized that a mutation in Kir3.4 encoded by KCNJ2 causes Andersen-Tawil syndrome, which is characterized by periodic paralysis and arrhythmia (Neurology 82: 1058, 2014).
 (vii) We identified mutations in HSPG2 in the second Japanese case with Schwartz-Jampel syndrome. We proved that domain III of perlecan is essential for secretion of perlecan to the extracellular space, and mutations in patients compromise it (Neuromuscular Disorder 25: 667, 2015).
 (viii) We found that cardiac conduction block in another type of channelopathy, myotonic dystrophy, is caused by aberrant splicing of cardiac sodium channel (Nat Commun 7: 11067, 2016).

3. We established iPSCs from patients with CMS (mutations in COLQ, CHRNE, DOK7, and GFPT1), SJS, and PP. We also induced iPSC-derived myotubes and developed in vitro NMJ, and established an assay system to screen for drugs that ameliorates pathological features of CMS-iPSC and SJS-iPSC.

4. Screening of activation of a signaling molecule downstream of MuSK phosphorylation revealed that drug X enhances clustering of acetylcholine receptors in cultured mouse myotubes. We proved the effect in model mice (in preparation).

5. We found that anti-epileptic and anti-Parkinsonian agent, zonisamide, enhances neurite elongation in cultured mouse spinal motor neurons, and confirmed the effect in model mice (PLoS One 10: e0142786, 2015).

6. We proved that an antisense oligonucleotide induces skipping of CHRNA1 exon P3A to generate a functional acetylcholine receptor alpha subunit (unpublished).

7. Mass spectrometry of RNA-affinity-purified proteins detected three RNA-binding proteins that regulate alternative splicing of GFPT1 exon 9. We also identified splicing cis-elements that are recognized by these RNA-binding proteins (in preparation). We also identified two novel therapeutic strategies to increase the enzymatic activity of GFPT1 in CMS-iPSC-derived myotubes (unpublished).
III. 成果の外部への発表

（1）学会誌・雑誌等における論文一覧（国内誌 2 件、国際誌 39 件）

【研究開発代表者　大野　欽司】

1. 骨格筋チャネル病の最新知見 — ミオトニー症候群と周期性四肢麻痺を中心に、久保田智哉, 高橋正紀. 別冊 医学のあゆみ イオンチャネル病のすべて, 2014

（2）学会・シンポジウム等における口頭・ポスター発表

1. **Ohno K.**
 Maintenance of the neuromuscular junction and its aberrations in hereditary and autoimmune disorders
 Guarda-Symposium 2014 on the Molecular and Cell Biology of the Neuromuscular System, Guarda, Switzerland
 Sep 1-5, 2014, 国外.
2. **Ohno K.**
 Physiology and hereditary/autoimmune pathology of acetylcholine receptor clustering at the neuromuscular junction
 10th Japanese-French Workshop“New advances in treatments of neuromuscular diseases: From Basic to Applied Myology”, Paris, France
 July 2-4, 2015, 国外.
3. **Ohno K.**
 Roles of collagen Q in MuSK antibody-positive myasthenia gravis
 12th International Meeting of Cholinesterases, Alicante, Spain
 Sep 27-Oct 2, 2015
4. **Ohno K, Nazim M, Masuda A.**
 Splicing regulation of the human acetylcholinesterase gene
 XVth International Symposium on Cholinergic Mechanisms, Marseille, France
 Oct 16-20, 2016, 国外.

【研究開発分担者 石浦章一】
1. アンチセンスを用いた筋疾患の治療, 口頭, 石浦章一, 日本筋学会, 2016/8/6, 国内.

【研究開発分担者 平澤恵理】
3. 大動脈構造や機能におけるパールカンの役割, 野中里紗, 家崎貴文, Susana de Vega, Aurelien Kerever, 山田吉彦, 平澤（有川）恵理, 第 46 回日本結合組織学会・第 61 回マトリックス研究会合同学術集会, 2014/6/7-8, 国内.
4. 鈎放散ペールカンの役割（口頭）, 野中里紗, 家崎貴史, Susana de Vega, 佐々木良元, 中田智彦, 平澤(有川)恵理, 第47回日本神経学会学術大会(京都), 2015/5/15-16, 国内。
5. 胸壁性アミロイドーシスの原因遺伝子、ペールカンの機能部分欠損変異の機能解析（口頭）, 平澤恵理, 須黒亮, 古屋徳彦, 野中里紗, 服部信孝, 中田智彦, 伊藤美佳子, 大野欽司, 第55回日本神経学会学術大会(福岡), 2015/5/22-24, 国内。
6. Naチャネルのスプライシング異常が筋強直性ジストロフィーの心臓伝導障害の原因となる（ポスター）, 藤村晴俊, 藤村晴俊, 望月秀樹, 石浦章一, Swanson Maurice, 堀江稔, Denis Furling, Charlet-Berguerand Nicolas, 高橋正紀, 第2回日本筋学会学術集会, 2016/8/5, 国内。

（3）「市民との科学・技術対話を社会」に対する取り組み

【研究開発分担者 石浦 章一】
1. 筋ジストロフィーの原因と最新治療, 石浦章一, 筋ジストロフィー研究会ランチョンセミナー（名古屋）, 2016/10/14, 国内

（4）特許出願
該当なし