[16im0402007h0006]

平成29年 5月 31日

平成28年度 委託研究開発成果報告書

基本情報 I. 事 業 名 : (日本語)医療分野研究成果展開事業 産学共創基礎基盤研究プログラム (英 語) Medical Research and Developmental Programs Focused on Technology Transfer : Collaborative Research Based on Industrial Demand (日本語) 高速誘導ラマン散乱スペクトルイメージングシステムの開発 研究開発課題名: (英 語) Development of stimulated Raman fast spectral imaging system 研究開発担当者 (日本語) 北海道大学大学院情報科学研究科 教授 橋本 守 所属 役職 氏名: (英 語)Graduate School of Information Science, Hokkaido University, Professor Mamoru Hashimoto 実施期間: 平成 28 年 4 月 1 日 ~ 平成 29 年 3 月 31 日 (日本語) 並列化誘導ラマンイメージングシステムの開発 分担研究 開発課題名: (英 語) Development of paralleled stimulated Raman imaging system 研究開発分担者 (日本語) 北海道大学大学院情報科学研究科 教授 橋本 守 所属 役職 氏名: (英 語)Graduate School of Information Science, Hokkaido University, Professor Mamoru Hashimoto 分担研究 (日本語) 並列化誘導ラマンロックインカメラの開発 開発課題名: (英 語) Development of a paralleled stimulated Raman lock-in camera (日本語)静岡大学電子工学研究所 教授 川人祥二 研究開発分担者 所属 役職 氏名: (英 語) Research Institute of Electronics, Shizuoka University, Professor Shoji Kawahito

II. 成果の概要(総括研究報告)

ラマン散乱は,無染色に分子種・分子構造に関する知見が得られるために,化学分析,物理化学研究, 半導体物性研究等に用いられてきたが,近年になって生体観測への応用が盛んに行われるようにな

1

ってきた.しかしながら、ラマン散乱は非常に微弱であるために、そのイメージをリアルタイム観測 することは困難であった.

本研究では、非線形ラマン散乱顕微鏡の多焦点化を行い、非共鳴バックグラウンドの影響なく、分子識別能力の高い指紋領域(500-1800 cm⁻¹)でのリアルタイム(33 ms/image)・ラマン・イメージングを実現すること、これを内視鏡へ展開することを目標に研究を行った.

非線形ラマン散乱の一種であるコヒーレントアンチストークスラマン散乱(CARS)顕微鏡とマイ クロレンズアレイを用いた多焦点ビーム走査系を最適化し,100 frame/s とビデオレート以上の高 速化に成功した.また,指紋領域をフルにカバーすることが可能な,波長走査範囲が1000 cm⁻¹を超 える同期波長走査レーザーの高性能化を行なった.レーザー共振器の波長分散の2次微分の最小化, 水蒸気による吸収の影響,エンドミラーに取り付けられた同期用ピエゾアクチュエーター高帯域化 等を行い,指紋領域(500-1800 cm⁻¹)を 30 秒で誘導ラマン散乱のスペクトルイメージを測定できるこ とを実証した.マルチモーダル観測システムを構築し,動脈硬化巣のイメージングを行った.誘導ラ マン散乱によるプラーク,第二高調波によるコラーゲン線維性被膜,二光子励起自家蛍光によるエラ スチンが明瞭に可視化された.また,CARSによる硬性鏡を開発し,切片試料だけでなく,前立腺周 囲筋膜の末梢神経のイメージングに成功した.

また、ラテラル電界制御型電荷変調の原理に基づく、新しい電荷変調素子により、80MHzのキャ リア周波数の誘導ラマン散乱(SRS)信号を、微小なピクセルによって復調することに成功した.さら に、この素子を復調器として用い、低域通過フィルタ・サンプリング回路・スイッチトキャパシタ積 分回路を通して信号成分を増幅するピクセル型 SRS 信号検出器を考案し、励起レーザー光による大 きなオフセットの中に含まれる微弱な SRS 信号を抽出して増幅することが可能となった.特に、考 案した2重変調法を適用することで、ピクセル型 SRS 信号検出器の1/f ノイズを低減することにも 成功し、SN 比を大きく改善することができた.0.11 µm CIS テクノロジに基づく、10×10 画素に よる多焦点 SRS ロックインイメージャを設計・試作し、これを用いた顕微鏡装着用小型・検討なロ ックインカメラを完成した.その1 ピクセルを用いて、ベンゾニトリルとステアリン酸のスペクト ルを測定し、自発ラマンによるスペクトルとして報告されている結果とほぼ同等のスペクトルが得 られた.また、ステージ走査(32×32@1µm/step)により、ステアリン酸と3T3-L1 細胞内の脂肪 滴の非標識 SRS イメージングに成功した.さらに、複数ピクセルによりステアリン酸のスペクトル 測定を実施し、2008 プレングに成功した.さらに、複数ピクセルによりステアリン酸のスペクトル

Raman spectroscopy has been used in the fields of analytical science, physical chemistry, semiconductor manufacturing, and so on, because of its potential to obtain the information of molecular structure and species without staining. Recently, biological applications of Raman imaging have been popular. However, since the cross-section of Raman scattering is quite small, real-time Raman imaging was unable by spontaneous Raman scattering.

In this study, we proposed the parallel excitation and detection of stimulated Raman scattering (SRS) to realize real-time (33 ms/image) in the fingerprint region (500-1800 cm⁻¹), and to apply the imaging technique to endoscopy.

We succeeded in the 100 frame/s (10 ms/image) by CARS (coherent anti-Stokes Raman

scattering) by the optimization of the optical system of excitation beams including the microlens array scanner for parallel excitation. The synchronized tunable laser system for nonlinear Raman light source, which covers whole fingerprint region, has been improved. The laser system was stabilized synchronization during the wavelength tuning by removing of the second deviation of laser cavity dispersion and affection of water vapor absorption, and improving the response of piezo actuator for adjusting the laser cavity length. As the results, we succeeded in the spectral imaging of stimulated Raman scattering in the full fingerprint region of 500 - 1800cm⁻¹ within 30 s. A multimodal microscopy system simultaneously observing SRS, CARS, second harmonic generation (SRS), and two photon excited fluorescence (TPF) was developed and was applied to the imaging of atherosclerotic plaque. Lipid, collagen, and elastin were clearly visualized by SRS, SHG, and TPF, respectively. We also developed a CARS rigid endoscopy system, which has a 300 mm length and 12 mm diameter tube. Nerve imaging was demonstrated by using the developed system and we succeeded in the nerve imaging within 5 s.

A complementary metal-oxide semiconductor (CMOS) lock-in pixel based on lateral electric field modulator (LEFM) was developed and we succeeded in the demodulation of SRS signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique was proposed and introduced in the SRS signal measurements. A lock-in imager with 10 x 10 pixels based on 0.11 μ m CIS technology was designed and developed. A lock-in camera for microscopy imaging was also developed using the imager. Observation of the SRS spectra of benzonitril and stearic acid was demonstrated using a pixel of the camera. Imaging of stearic acid crystals and lipid droplets in cells was also demonstrated. The availability of multi-focus SRS detection we proposed were confirmed using small semiconductor pixels

III. 成果の外部への発表

(1)学会誌・雑誌等における論文一覧(国内誌 0 件、国際誌 3 件)

- D-X. Lioe, K. Mars, T. Takasawa, K. Yasutomi, K. Kagawa, <u>M. Hashimoto</u>, <u>S. Kawahito</u>, "A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering", Proc. SPIE Vol. 9720, 97200J, (2016).
- D. X. Lioe, K. Mars, <u>S. Kawahito</u>, K. Yasutomi, K. Kagawa, T. Yamada, and <u>M. Hashimoto</u>, "A stimulated Raman scattering CMOS pixel using a high-speed charge modulator and lockin amplifier", Sensors, Vol. 16, No. 4, 532 (2016).

- Y. Matsuda, J. Miura, M. Shimizu, T. Aoki, M. Kubo, S. Fukushima, <u>M. Hashimoto</u>, F. Takeshige, and T. Araki, "Influence of dental caries on nonenzymatic glycation of human dentin", Journal of Dental Research, Vol. 95, No. 13, 1523 (2016).
- (2) 学会・シンポジウム等における口頭・ポスター発表
 - "コヒーレントアンチストークスラマン散乱硬性鏡を用いた前立腺筋膜内の神経の無染色イメ ージング", ロ頭, 廣瀬敬吾, 福島修一郎, 古川 太一, 橋本守, 第 64 回応用物理学会春季学術講 演会, 17p-413-2, パシフィコ横浜, 2017/3/14, 国内.
 - "Coherent Raman scattering microscopy and endoscopy", □ 頭, <u>M. Hashimoto</u>, Japan-Taiwan Medical Spectroscopy International Symposium / 14th Annual Meeting of the Japan Association of Medical Spectroscopy, Awaji, 2016/12/6, 国内.
 - 3. "A Stimulated Raman Scattering CMOS Image Sensor Using a Large-Area High-Speed Charge Modulator and Lock-in Amplifier", ポスター, D-X. Lioe, K. Mars, K. Yasutomi, K. Kagawa, <u>M. Hashimoto</u>, <u>S. Kawahito</u>, The 18th Takayanagi Kenjiro Memorial Symposium, Poster-17, Shizuoka, Japan, 2016/11/15, 国内.
 - 4. "A Stimulated Raman Scattering CMOS Imager using a High-speed Charge Modulator and Lock-in Amplifier", ポスター, D. X. Lioe, K. Mars, K. Yasutomi, K. Kagawa, <u>M. Hashimoto</u>, <u>S. Kawahito</u>, The 14th International Conference of Near-Field Optics, Nanophotonics and Related Techniques (NFO-14), We-14P-18, pp.293, Shizuoka, Japan, 2016/9/7, 国内.
 - 5. "非線形ラマン散乱を用いた顕微イメージングと内視鏡への展開", ロ頭, 橋本守, 第 57 回日 本組織細胞化学会総会・学術集会シンポジウム「新しい手法による "観る・診る・看る" 組織 細胞化学」, 杏林大学井の頭キャンパス, 2016/9/3, 国内.
 - 6. "A Stimulated Raman Scattering CMOS Image Sensor Using a High-Speed Charge Modulator and Lock-in Amplifier", ポスター, D-X. Lioe, K. Mars, K. Yasutomi, K. Kagawa, <u>S. Kawahito</u>, <u>M. Hashimoto</u>, Taiwan and Japan Conference on Circuits and Systems (TJCAS'16), S2B, Tainan, Taiwan, 2016/8/1, 国外.
 - "A Low-Noise CMOS Image Sensor Using High-Speed Charge Modulator and Lock-in Pixel Amplifier for Stimulated Raman Scattering",□頭, K. Mars, D-X. Lioe, <u>S. Kawahito</u>, K. Yasutomi, K. Kagawa, T. Yamada, <u>M. Hashimoto</u>, 第 41 回 光学シンポジウム,講演予稿集, pp.51-52, 東京, 2016/6/24, 国内.
 - "コヒーレントアチスクラマ散乱硬性鏡の色収差補正",口頭,廣瀬敬吾,青木拓也,古川太一, 福島修一郎,<u>橋本守</u>,平成28年度日本分光学会国際シンポジウム・年次講演会,大阪大学豊中 キャンパス,大阪,2016/5/24,国内.
 - 9. "術中での無染色神経イメージングを目指したコヒーレントアンチストークスラマン散乱硬性鏡の開発",口頭,廣瀬敬吾,青木拓也,福島修一郎,坂口良幸,古川太一,<u>橋本守</u>,第55回日本 生体医工学会大会,3T4-3-2,富山国際会議場,富山県,2016/4/28,国内.

(3)「国民との科学・技術対話社会」に対する取り組み

染めずに見る顕微鏡とその周辺技術 橋本守,川人祥二,川人日本医療研究開発機構(AMED) 生 体イメージング 新技術説明会,2016/7/12,国内.

(4) 特許出願

なし