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1. Establishment of methods of detecting force-induced cell responses

We have analyzed the mechanical force-induced cell responses by measuring the change in the activity of a
signaling molecule RhoA. However, because the change in RhoA activity was faint, more simple and sensitive
method to detect force-induced cell responses must be established. We first investigated the effects of the stiffness
of the substrate, to which cells were attached, and the conditions of plasma treatment on force-induced changes
in cell dynamics and established the proper method to analyze the force-induced changes in actin cytoskeleton
and activity of signaling molecules. In order to improve the reproducibility, it was necessary to precisely control
the stiffness of the silicone gum substrate and the conditions of plasma treatment of the silicone surface to
facilitate cell adhesion. It was also important to increase the binding efficiency of extracellular matrix proteins to

the silicone membrane for detecting the tensile force-induced cell responses.

2. Selection of Rho-GEFs for further analysis

We have identified 16 Rho-GEFs involved in mechanoresponse. To focus our study on several Rho-GEFs, we
selected GEF-H1, Larg and p190RhoGEF from these 16 Rho-GEFs, because they were reported to participate in
mechanoresponses by other groups and appeared to be directly involved in mechanoresponse. We also selected
PLEKHGH4B, a homologue of Solo, which we have extensively studied. We planned to identify the interacting
proteins of these Rho-GEFs by BiolD method, using £. colrderived biotin ligase, and started to construct the
plasmids coding for the probes for BiolD proteomics analysis. We plan to examine the role of the interacting
proteins in mechanoresponse by measuring the changes in the interactions in the presence or absence of force

application.

3. Proteomics analysis of Solo-binding proteins using BiolD

We are searching for the Solo-binding proteins, which regulate activity and localization of Solo. To search for Solo-
binding proteins, we used a BiolD method, which uses a mutant of . colrderived biotinylation enzyme BirA
(BirA*). We constructed expression plasmids coding for BirA* fused to GFP-tagged Solo WT, and its mutants, a
GEF activity-defective mutant (Solo LE) and deletion mutants, and established MCF7 cells constantly expressing
these probes. We investigated the conditions for biotinylation and succeeded to identify the proteins that are
biotinylated specifically by BirA*-GFP-Solo. It was also found that Solo interacts with several proteins, depending
on the GEF activity. Currently, we are recovering these proteins for mass spectrometric analysis.

4. Establishment of new techniques to visualize mechanical forces in living cells

To develop tension sensor probes that visualize the tensile force in living cells, we first constructed probe proteins
for visualizing the tensile force at cell-cell adhesion sites. YFP (Venus) was inserted into the extracellular domain
(near the transmembrane domain) of E-cadherin, and a red fluorescent protein mCherry was fused to the C-
terminal of the intracellular domain. Venus was inserted as circular permutation Venus mutants. Several
constructs exhibited YFP fluorescence of the circular permutation Venus mutants at the cell-cell adhesion site. To
examine whether these probes are useful for detecting tensile force, we are testing the effect of ROCK inhibitor
on YFP fluorescence at cell-cell adhesion sites. In addition to these probes, we also examined whether YFP-tagged
myosin S1 fragment or YFP-tagged Solo can be used to detect mechanical force in cells, using MDCK cells
constitutively expressing these constructs. We started to examine whether these probes work as tension sensors

using the cell contraction assay.
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